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Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations
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Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.
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Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)



2

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.
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B. Native Environment
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This computer supports SGX1 using Intel’s SGX driver. The
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For
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Attacker model

Hardware-based attacks
a.k.a physical attacks

Software-based attacks
a.k.a micro-architectural attacks

vs

Physical access to hardware
→ embedded devices

Co-located or remote attacker
→ complex systems
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Outline

Focus on one fault attack: Rowhammer

Overview of side-channel attacks

Conclusions
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Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice
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Rowhammer
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How to exploit random bit flips?

• Rowhammer was deemed non-exploitable and only a reliability issue

• bit flips are not random→ highly reproducible flip pattern!
• ideas for exploitation

1. bit flip in data structure, e.g., page table→ privilege escalation
2. bit flip in instruction opcode→ privilege escalation
3. bit flip in signature→ fault-based cryptanalysis



8

How to exploit random bit flips?

• Rowhammer was deemed non-exploitable and only a reliability issue
• bit flips are not random→ highly reproducible flip pattern!
• ideas for exploitation

1. bit flip in data structure, e.g., page table→ privilege escalation
2. bit flip in instruction opcode→ privilege escalation
3. bit flip in signature→ fault-based cryptanalysis



Overview of side-channel attacks



9

From small optimizations…

2011 Sandy Bridge

2012 Ivy Bridge

2013 Haswell

2014 Broadwell

2015 Skylake

2016 Kaby Lake

2017 Coffee Lake

2018 Whiskey Lake

2019 Comet Lake/Ice Lake

2020 Tiger Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…
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… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations

• several processes are sharing microarchitectural components
• attacker infers information from a (vulnerable) victim process via hardware
usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions→ hard to detect
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Side-channel attacks
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Side-channel attacks: Two faces of the same coin

Implementation Hardware

&
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Research questions

1. Which software implementation is vulnerable?

2. Which hardware component is vulnerable?
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1. Which software implementation is vulnerable?

State of the art (more or less)
1. Spend too much time reading OpenSSL code
2. Find vulnerability
3. Exploit it manually using known side channel
→ e.g. CPU cache

4. Publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,

CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,

CVE-2020-16150
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Canonical example: GnuPG 1.4.13 RSA square-and-multiply exponentiation

GnuPG version 1.4.13 (2013)

Algorithm 1: GnuPG 1.4.13 Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: be mod n
X← 1
for i← bitlen(e) downto 0 do

X← square(X)
X← X mod n
if ei = 1 then

X←multiply(X,b)
X← X mod n

end
end
return X
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Attacking GnuPG 1.4.13 RSA exponentiation

• monitor the square and multiply functions with a cache side channel
to recover the bits of the secret exponent
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2. Which hardware component leaks information?

State of the art (more or less)
1. Spend too much time reading Intel manuals
2. Find weird behavior in corner cases
3. Exploit it using a known vulnerability
4. Publish
5. goto step 1
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Shared hardware

shared hardware

CPU

execution
units

data and
instruction

cache

branch
prediction

unit

memory

ring
inter-

connect

memory
bus

DRAM

Each component shared by two processes
is a potential micro-architectural side-channel vector



19

Hyper-threading: Same-core attacks

• threads sharing one core share resources: L1, L2 cache, branch predictor, TLB…

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

L1d, L1i, L2 

cache attacks

BSDCon'05, CT-RSA'06

Branch Prediction

CT-RSA'07
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Background: Execution pipeline

• instructions are decomposed in
uops to optimize Out-of-Order
execution

• uops are dispatched to specialized
execution units through CPU ports

• deterministic decomposition of
instructions into uops

Execution Engine

uOps uOps uOps uOps uOps uOps

Thread
0

Thread
1

Decode

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

Scheduler

inst.
fetch

uOps

Memory Subsystem

INT ALU

INT DIV

VEC ALU

AES

VEC STR

FP DIV

BRANCH

VEC MUL

INT ALU

INT MUL

VEC ALU

BIT SCAN

VEC MUL

INT ALU

VEC SHU

VEC ALU

LEA

INT ALU

BRANCH

AGU

LOAD

AGU

LOAD

STORE AGU

uOps

inst.
fetch
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Port contention

No contention

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A A
Execution
engine

All attacker instructions are
executed in a row
→ fast execution time

Contention

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A V A
Execution
engine

Victim instructions delay the
attacker instructions
→ slow execution time

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
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Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage



22

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 1

Secret is 0!



22

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Secret is 1!
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Port contention: applications

• end-to-end attack on a TLS server (OpenSSL 1.1.0h): recovers a P-384 ECDSA
private key
→ secret dependent on double-and-add operations of ec_wNAF_mul point

multiplication

• SMoTherSpectre, a speculative code-reuse attack

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
A. Bhattacharyya et al. “SMoTherSpectre: Exploiting Speculative Execution through Port Contention”. In: CCS. 2019.
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Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!
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Possible side channels using

components shared by a core?

Stop sharing a core!
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Cross-core attacks!

• cores also share resources: L3 cache, Ring Interconnect, GPU…

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

L1d, L1i, L2 

cache attacks

BSDCon'05, CT-RSA'06

Branch Prediction

CT-RSA'07

LLC attacks

USENIX'14, S&P'15

Grand Pwning Unit

S&P'18

Lord of the Ring(s)

USENIX Sec'21
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Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive
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Caches on Intel CPUs
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Cache timing differences
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From theoretical to practical cache attacks

• first theoretical attack in 1996 by Kocher
• first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik et al.
• renewed interest for the field in 2014 after Flush+Reload by Yarom and
Falkner

• even more interest in 2018 after the disclosure of Spectre and Meltdown

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P. 2019.
M. Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: USENIX Security Symposium. 2018.
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Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM

D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
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Flush+Reload: Applications

• side channel attacks on cryptographic primitives:
• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• attacks against pseudorandom number generators
• attacks against RSA key generation
• revival of Bleichenbacher attacks on TLS

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
B. Gülmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE. 2015.
S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG”. In: S&P. 2020.
A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019).
E. Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019.
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Prime+Probe: Applications

• cross-VM side channel attacks on crypto implementations:
• El Gamal (sliding window): full key recovery in 12 min.

• covert channels between virtual machines in the cloud
• tracking user behavior in the browser, in JavaScript

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.



32

Easy solution #2

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?
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Easy solution #2

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?
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Cross-CPU attacks!

• CPUs also share resources: DRAM

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

L1d, L1i, L2 

cache attacks

BSDCon'05, CT-RSA'06

Branch Prediction

CT-RSA'07

LLC attacks

USENIX'14, S&P'15

Grand Pwning Unit

S&P'18

Lord of the Ring(s)

USENIX Sec'21

DRAMA

USENIX Sec'16



Conclusions
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Conclusions

• first paper by Kocher in 1996: 25 years of research in this area

• domain still in expansion: increasing number of papers published since 2015
• any shared component is a potential side-channel vector
• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components

• how to prevent attacks based on performance optimizations without
removing performance?
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