
Micro-architectural attacks: from CPU to browser

Clémentine Maurice, CNRS, CRIStAL
@BloodyTangerine
26 October 2022—RAID 2022 keynote



Execution leaves traces in 
components



Inspecting these traces allows 
retrieving secrets!



This requires surgical precision 
and a great control over CPU 
components...



This requires surgical precision 
and a great control over CPU 
components...

hardware

OS

applications



How do we do it from web 
browsers?hardware

OS

applications



3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)



3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)



3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)



3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification

attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)



3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)



4

Attacker model

Hardware-based attacks
a.k.a physical attacks

Software-based attacks
a.k.a micro-architectural attacks

vs

Physical access to hardware
→ embedded devices

Co-located or remote attacker
→ complex systems



5

From small optimizations…

2011 Sandy Bridge

2012 Ivy Bridge

2013 Haswell

2014 Broadwell

2015 Skylake

2016 Kaby Lake

2017 Coffee Lake

2018 Whiskey Lake

2019 Comet Lake/Ice Lake

2020 Tiger Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…



5

From small optimizations…

2011 Sandy Bridge

2012 Ivy Bridge

2013 Haswell

2014 Broadwell

2015 Skylake

2016 Kaby Lake

2017 Coffee Lake

2018 Whiskey Lake

2019 Comet Lake/Ice Lake

2020 Tiger Lake

• new microarchitectures yearly
• performance improvement ≈ 5%

• very small optimizations: caches, branch
prediction…



5

From small optimizations…

2011 Sandy Bridge

2012 Ivy Bridge

2013 Haswell

2014 Broadwell

2015 Skylake

2016 Kaby Lake

2017 Coffee Lake

2018 Whiskey Lake

2019 Comet Lake/Ice Lake

2020 Tiger Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…



6

… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations

• several processes are sharing microarchitectural components
• attacker infers information from a (vulnerable) victim process via hardware
usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect



6

… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components

• attacker infers information from a (vulnerable) victim process via hardware
usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect



6

… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a (vulnerable) victim process via hardware
usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect



6

… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a (vulnerable) victim process via hardware
usage

• pure-software attacks by unprivileged processes

• sequences of benign-looking actions → hard to detect



6

… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a (vulnerable) victim process via hardware
usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions → hard to detect



7

Side-channel attacks



8

Outline

Overview of micro-architectural attacks

Porting micro-architectural attacks to the Web



8

Outline

Overview of micro-architectural attacks

Porting micro-architectural attacks to the Web



Overview of micro-architectural
attacks



9

Micro-architectural attacks: Two faces of the same coin

Implementation Hardware

&



10

Research questions

1. Which software implementation is vulnerable?

2. Which hardware component is vulnerable?



11

1. Which software implementation is vulnerable?

State of the art (more or less)
1. Spend too much time reading OpenSSL code
2. Find vulnerability
3. Exploit it manually using known side channel

→ e.g. CPU cache
4. Publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,

CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,

CVE-2020-16150



12

2. Which hardware component leaks information?

State of the art (more or less)
1. Spend too much time reading Intel manuals
2. Find weird behavior in corner cases
3. Exploit it using a known vulnerability
4. Publish
5. goto step 1



13

Shared hardware

shared hardware

CPU

execution
units

data and
instruction

cache

branch
prediction

unit

memory

ring
inter-

connect

memory
bus

DRAM

Each component shared by two processes
is a potential micro-architectural side-channel vector



14

Hyper-threading: Same-core attacks

• threads sharing one core share resources: L1, L2 cache, branch predictor, TLB…

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

L1d, L1i, L2 

cache attacks

BSDCon'05, CT-RSA'06

Branch Prediction

CT-RSA'07



15

Background: Execution pipeline

• instructions are decomposed in
uops to optimize Out-of-Order
execution

• uops are dispatched to specialized
execution units through CPU ports

• deterministic decomposition of
instructions into uops

Execution Engine

uOps uOps uOps uOps uOps uOps

Thread
0

Thread
1

Decode

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

Scheduler

inst.
fetch

uOps

Memory Subsystem

INT ALU

INT DIV

VEC ALU

AES

VEC STR

FP DIV

BRANCH

VEC MUL

INT ALU

INT MUL

VEC ALU

BIT SCAN

VEC MUL

INT ALU

VEC SHU

VEC ALU

LEA

INT ALU

BRANCH

AGU

LOAD

AGU

LOAD

STORE AGU

uOps

inst.
fetch



16

Port contention

No contention

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A A
Execution
engine

All attacker instructions are
executed in a row
→ fast execution time

Contention

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A V A
Execution
engine

Victim instructions delay the
attacker instructions
→ slow execution time

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



16

Port contention

No contention

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A A
Execution
engine

All attacker instructions are
executed in a row
→ fast execution time

Contention

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A V A
Execution
engine

Victim instructions delay the
attacker instructions
→ slow execution time

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



17

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage



17

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 1

Secret is 0!



17

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Secret is 1!



18

Port contention: applications

• end-to-end attack on a TLS server (OpenSSL 1.1.0h): recovers a P-384 ECDSA
private key
→ secret dependent on double-and-add operations of ec_wNAF_mul point

multiplication

• SMoTherSpectre, a speculative code-reuse attack

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
A. Bhattacharyya et al. “SMoTherSpectre: Exploiting Speculative Execution through Port Contention”. In: CCS. 2019.



19

Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!



19

Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!



20

Cross-core attacks!

• cores also share resources: L3 cache, Ring Interconnect, GPU…

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

L1d, L1i, L2 

cache attacks

BSDCon'05, CT-RSA'06

Branch Prediction

CT-RSA'07

LLC attacks

USENIX'14, S&P'15

Grand Pwning Unit

S&P'18

Lord of the Ring(s)

USENIX Sec'21



21

Cache timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses



22

From theoretical to practical cache attacks

• first theoretical attack in 1996 by Kocher
• first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik et al.
• renewed interest for the field in 2014 after Flush+Reload by Yarom and
Falkner

• even more interest in 2018 after the disclosure of Spectre and Meltdown

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P. 2019.
M. Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: USENIX Security Symposium. 2018.



23

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)



23

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached



23

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line



23

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data



23

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data



24

Flush+Reload: Applications

• side channel attacks on cryptographic primitives:
• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• attacks against pseudorandom number generators
• attacks against RSA key generation
• revival of Bleichenbacher attacks on TLS

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
B. Gülmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE. 2015.
S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG”. In: S&P. 2020.
A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019).
E. Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019.



25

Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!



25

Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!



26

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space



26

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)



26

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data



26

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data



26

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s



26

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access



27

Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)



28

Prime+Probe: Applications

• cross-VM side channel attacks on crypto implementations:
• El Gamal (sliding window): full key recovery in 12 min.

• covert channels between virtual machines in the cloud

• tracking user behavior in the browser, in JavaScript

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.



28

Prime+Probe: Applications

• cross-VM side channel attacks on crypto implementations:
• El Gamal (sliding window): full key recovery in 12 min.

• covert channels between virtual machines in the cloud
• tracking user behavior in the browser, in JavaScript

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.



29

Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?



29

Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?



30

Cross-CPU attacks!

• CPUs also share resources: DRAM

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

L1d, L1i, L2 

cache attacks

BSDCon'05, CT-RSA'06

Branch Prediction

CT-RSA'07

LLC attacks

USENIX'14, S&P'15

Grand Pwning Unit

S&P'18

Lord of the Ring(s)

USENIX Sec'21

DRAMA

USENIX Sec'16



Porting micro-architectural attacks
to the Web



31



32

Porting micro-architectural attacks to the Web

• side-channel attacks on the cache, DRAM, MMU, (…), and
transient execution attacks like Spectre, ret2spec, RIDL, (…),
are coming to web browsers

• very low-level attacks in a high-level language with many
abstraction layers in between

• complex but not impossible to perform
• fundamentally hard or impossible to fix in the browser

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021



33

Side-channel attacks in JavaScript?

• side channels are only doing benign operations

• all side-channel attacks: measuring time
• cache attacks: accessing their own memory
• port contention attacks: executing specific instructions



33

Side-channel attacks in JavaScript?

• side channels are only doing benign operations
• all side-channel attacks: measuring time

• cache attacks: accessing their own memory
• port contention attacks: executing specific instructions



33

Side-channel attacks in JavaScript?

• side channels are only doing benign operations
• all side-channel attacks: measuring time
• cache attacks: accessing their own memory
• port contention attacks: executing specific instructions



Measuring time



35

High-resolution timers?

• measure small timing differences: need a high-resolution timer

• native: rdtsc, timestamp in CPU cycles
• JavaScript: performance.now() has the highest resolution

performance.now()
[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network



35

High-resolution timers?

• measure small timing differences: need a high-resolution timer
• native: rdtsc, timestamp in CPU cycles

• JavaScript: performance.now() has the highest resolution

performance.now()
[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network



35

High-resolution timers?

• measure small timing differences: need a high-resolution timer
• native: rdtsc, timestamp in CPU cycles
• JavaScript: performance.now() has the highest resolution

performance.now()
[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network



35

High-resolution timers?

• measure small timing differences: need a high-resolution timer
• native: rdtsc, timestamp in CPU cycles
• JavaScript: performance.now() has the highest resolution

performance.now()
[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network



36

Evolution of timers until today

2015 2016 2018 2019 2020
Firefox 41
resolution:

5 µs

Firefox 79
& COOP/COEP:
resolution:

20 µs

Firefox 60
resolution + jitter:

1ms

Firefox 59
resolution: 2ms

Firefox 57.0.4
resolution: 20 µs

Chrome 44
resolution:

5 µs

Chrome 64
resolution + jitter:

100 µs

Chrome 72
resolution + jitter:

5 µs

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021



37

It was better before

• before September 2015: performance.now() had a nanosecond resolution

• Oren et al. demonstrated cache side-channel attacks in JavaScript
• “fixed” in Firefox 41: rounding to 5 µs

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/


37

It was better before

• before September 2015: performance.now() had a nanosecond resolution
• Oren et al. demonstrated cache side-channel attacks in JavaScript

• “fixed” in Firefox 41: rounding to 5 µs

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/


37

It was better before

• before September 2015: performance.now() had a nanosecond resolution
• Oren et al. demonstrated cache side-channel attacks in JavaScript
• “fixed” in Firefox 41: rounding to 5 µs

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/


38

We can do better!

• microsecond resolution is not enough

• two approaches
1. recover a higher resolution from the available timer
2. build our own high-resolution timer

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



38

We can do better!

• microsecond resolution is not enough
• two approaches

1. recover a higher resolution from the available timer
2. build our own high-resolution timer

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



38

We can do better!

• microsecond resolution is not enough
• two approaches

1. recover a higher resolution from the available timer

2. build our own high-resolution timer

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



38

We can do better!

• microsecond resolution is not enough
• two approaches

1. recover a higher resolution from the available timer
2. build our own high-resolution timer

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution

• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution

• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution

• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution

• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution

• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution
• start measurement at clock edge

• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution
• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



39

Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution
• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs



40

Building a timer: Web worker

• feature to share data: SharedArrayBuffer

• web worker can simultaneously read/write data
• no message passing overhead
• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns



40

Building a timer: Web worker

• feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data

• no message passing overhead
• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns



40

Building a timer: Web worker

• feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data
• no message passing overhead

• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns



40

Building a timer: Web worker

• feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data
• no message passing overhead
• one dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns



40

Building a timer: Web worker

• feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data
• no message passing overhead
• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns



41

Jitter?

• lowering timer resolution is not enough
• adding jitter → makes clock interpolation inefficient (need
to redo the measurements to get rid of noise)

→ has no impact on SharedArrayBuffers!
• browsers are adopting better isolation between websites
(e.g., Site Isolation) to counter transient execution attacks

• back to higher timer resolution for usability → side-channel
attacks are possible again!

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021



41

Jitter?

• lowering timer resolution is not enough
• adding jitter → makes clock interpolation inefficient (need
to redo the measurements to get rid of noise)

→ has no impact on SharedArrayBuffers!

• browsers are adopting better isolation between websites
(e.g., Site Isolation) to counter transient execution attacks

• back to higher timer resolution for usability → side-channel
attacks are possible again!

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021



41

Jitter?

• lowering timer resolution is not enough
• adding jitter → makes clock interpolation inefficient (need
to redo the measurements to get rid of noise)

→ has no impact on SharedArrayBuffers!
• browsers are adopting better isolation between websites
(e.g., Site Isolation) to counter transient execution attacks

• back to higher timer resolution for usability → side-channel
attacks are possible again!

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021



Cache attacks in browsers



43

Cache attacks: Challenges with JavaScript

1. No high-resolution
timers

2. No instruction to
flush the cache

3. No knowledge about
physical addresses



44

Eviction sets in JavaScript

300 350 400 450 500 550 600 650 700 750

100

200

300

Access time [SharedArrayBuffer increments]

Nu
m
be

ro
fc

as
es

cache hit cache miss

→ we can distinguish cache hits from cache misses (only ≈ 150 cycles difference)!

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



45

Cache attacks in JavaScript: applications

• spying on user behavior: detect mouse
and network activity

• covert channel across origins
• covert channel host-to-VM
• website fingerprinting

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
A. Shusterman et al. “Robust Website Fingerprinting Through the Cache Occupancy Channel”. In: USENIX Security Symposium. 2019.



Other micro-architectural attacks in browsers?



47

Other micro-architectural attacks in browsers

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021.



48

Bonus: you don’t even need JavaScript!

A. Shusterman et al. “Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses”. In: USENIX Security Symposium. 2021.



49

Conclusions

• first paper by Kocher in 1996: 25 years of research in this area

• domain still in expansion: increasing number of papers published since 2015
• any shared component is a potential side-channel vector
• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers



49

Conclusions

• first paper by Kocher in 1996: 25 years of research in this area
• domain still in expansion: increasing number of papers published since 2015

• any shared component is a potential side-channel vector
• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers



49

Conclusions

• first paper by Kocher in 1996: 25 years of research in this area
• domain still in expansion: increasing number of papers published since 2015
• any shared component is a potential side-channel vector

• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers



49

Conclusions

• first paper by Kocher in 1996: 25 years of research in this area
• domain still in expansion: increasing number of papers published since 2015
• any shared component is a potential side-channel vector
• it’s really hard not to share a component

• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers



49

Conclusions

• first paper by Kocher in 1996: 25 years of research in this area
• domain still in expansion: increasing number of papers published since 2015
• any shared component is a potential side-channel vector
• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers



49

Conclusions

• first paper by Kocher in 1996: 25 years of research in this area
• domain still in expansion: increasing number of papers published since 2015
• any shared component is a potential side-channel vector
• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers



Thank you!

Contact

 clementine.maurice@inria.fr
 @BloodyTangerine



Micro-architectural attacks: from CPU to browser

Clémentine Maurice, CNRS, CRIStAL
@BloodyTangerine
26 October 2022—RAID 2022 keynote


	Overview of micro-architectural attacks
	Porting micro-architectural attacks to the Web

