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Execution leaves traces in
components




Inspecting these traces allows
retrieving secrets!
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components...




applications

0s

This requires surgical precision
and a great control over CPU
components...

hardware




applications

0s

How do we do it from web

hardware browsers?
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Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations
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Attacker model

Hardware-based attacks Software-based attacks
a.k.a physical attacks a.k.a micro-architectural attacks

Physical access to hardware Co-located or remote attacker
— embedded devices — complex systems

VS
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- new microarchitectures yearly
- performance improvement ~ 5%

- very small optimizations: caches, branch

prediction...
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... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations

- several processes are sharing microarchitectural components

- attacker infers information from a (vulnerable) victim process via hardware
usage

- pure-software attacks by unprivileged processes

- sequences of benign-looking actions — hard to detect



Side-channel attacks
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Porting micro-architectural attacks to the Web



Overview of micro-architectural
attacks



Micro-architectural attacks: Two faces of the same coin

OO

Implementation 21231e Hardware E

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: b® mod n
X<+1
for i < bitlen(e) downto 0 do
X+ multiply(X,X)
if e; = 1then &
| X+ multiply(x, b)
end
end
return X




Research questions

1. Which software implementation is vulnerable?

2. Which hardware component is vulnerable?



1. Which software implementation is vulnerable?

State of the art (more or less)
1. Spend too much time reading OpenSSL code
2. Find vulnerability

3. Exploit it manually using known side channel
— e.g. CPU cache

4. Publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,

CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,

CVE-2020-16150
"



2. Which hardware component leaks information?

State of the art (more or less)
1. Spend too much time reading Intel manuals

. Find weird behavior in corner cases

2

3. Exploit it using a known vulnerability
4. Publish

5. goto step 1



Shared hardware

shared hardware

/\

memory CPU
DRAM ~ memory ring branch data and execution
bus inter- prediction  instruction units
connect unit cache

Each component shared by two processes

is a potential micro-architectural side-channel vector 5
1



Hyper-threading: Same-core attacks

- threads sharing one core share resources: L1, L2 cache, branch predictor, TLB...

PortSmash
Translation leak-aside buffer S&P'19

USENIX Sec'18 <—\

[0}

@ G of fder Engine

Lid, L1i, L2 Branch Prediction
cache attacks CT-RSA'07
BSDCon'05, CT-RSA'06 I



Background: Execution pipeline

- instructions are decomposed in
uops to optimize Out-of-Order
execution L Scheduler J
- uops are dispatched to specialized |
execution units through CPU ports
- deterministic decomposition of EE camerre | | | |
instructions into uops emory Subsysto

15



Port contention

No contention

Attacker
instr Port 1
Execution
Schedulerﬂ . ) engine

Victim

All attacker instructions are
executed in a row
— fast execution time

16
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



Port contention

No contention Contention

Attacker Attacker
instr Port 1 instr Port 1
! | Execution | | execution

vt | vitim e
instr
All attacker instructions are Victim instructions delay the
executed in a row attacker instructions
— fast execution time — slow execution time

16
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



Port contention side-channel attack

Victim

secret == secret == .

l l Monitors port usage o N N

”~ S\

(&
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmo
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmO
Contention on Port 1 Contention on Port 5

17



Port contention side-channel attack

Victim
; T T
Contention on Port 1 S~
POPCNT %r8,%r8 o
POPCNT %r8,%r8
. -
POPCNT %r8,%r8 Secret is 0!

POPCNT %r8,%r8
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Port contention side-channel attack

Victim

secret == .
l

a b 4 ) 4
Contention on Port 5 C 2al
VPBROADCASTD %xmm@, %ymmoO
VPBROADCASTD %xmm@, %ymmoO
Secret is 1!

VPBROADCASTD %xmm@, %ymmo
VPBROADCASTD %xmm@, %ymmo

17



Port contention: applications

- end-to-end attack on a TLS server (OpenSSL 11.0h): recovers a P-384 ECDSA
private key
— secret dependent on double-and-add operations of ec_wNAF_mul point
multiplication

- SMoTherSpectre, a speculative code-reuse attack

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
A. Bhattacharyya et al. “SMoTherSpectre: Exploiting Speculative Execution through Port Contention”. In: CCS. 2019.

18



Easy solution #1

Possible side channels using

components shared by a core?

19



Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!

19



Cross-core attacks!

- cores also share resources: L3 cache, Ring Interconnect, GPU...

PortSmash
Translation leak-aside buffer S&P'19

USENIX Sec'18 (*\ LLC attacks
} ) USENIX'14, S&P'15

&L=
Grand Pwning Unit

S&P'18

Lid, L1i, L2 Branch Prediction
cache attacks CT-RSA' 07 Lord of the Ring(s)
BSDCon'05, CT-RSA'06 USENIX Sec'21

20






From theoretical to practical cache attacks

- first theoretical attack in 1996 by Kocher
- first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik et al.

- renewed interest for the field in 2014 after Flush+Reload by Yarom and
Falkner

- even more interest in 2018 after the disclosure of Spectre and Meltdown

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES". In: CT-RSA 2006. 2006.

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P. 2019.

22
M. Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: USENIX Security Symposium. 2018.



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

23
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Cacheq

|/
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Cache attacks: Flush+Reload
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Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Cache attacks: Flush+Reload

loads data

—

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data
23



Cache attacks: Flush+Reload

I "e10ads dat
Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

Step 4: Attacker reloads the data 2



Flush+Reload: Applications

- side channel attacks on cryptographic primitives:

- RSA: 96.7% of secret key bits in a single signature
- AES: full key recovery in 30000 dec. (a few seconds)

- attacks against pseudorandom number generators
- attacks against RSA key generation

- revival of Bleichenbacher attacks on TLS

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
B. Gulmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE. 2015.

S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG". In: S&P. 2020.

A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019).

24
E. Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019.



Easy solution #2

Possible side channels using

memory deduplication?
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Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!

25



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

26



Cache attacks: Prime+Probe

N Y S Y S Sy

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
26



Challenges with Prime+Probe

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?

3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)

2. an eviction strategy (issue #3)
27



Prime+Probe: Applications

- cross-VM side channel attacks on crypto implementations:
- El Gamal (sliding window): full key recovery in 12 min.

- covert channels between virtual machines in the cloud

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS'77. 2017.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015.
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Prime+Probe: Applications

- cross-VM side channel attacks on crypto implementations:
- El Gamal (sliding window): full key recovery in 12 min.

- covert channels between virtual machines in the cloud

- tracking user behavior in the browser, in JavaScript

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P'15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS'77. 2017.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015.

28



Easy solution #3

Possible side channels using

components shared by a CPU?
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Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?

29



Cross-CPU attacks!

+ CPUs also share resources: DRAM

PortSmash

Translation leak-aside buffer S§P'19 J
USENIX Sec'18 N /} LLC attacks y DRAMA
= : & Gk e xKUSENIX'14, S&P' 15 USENIX Sec'16

]
=

A

= [Elk] o
e | e Grand Pwning Unit
o d S&P'18
L1d, L1i, L2 Branch Prediction
cache attacks CT-RSA'0Q7 Lord of the Ring(s)

BSDCon'05, CT-RSA'06 USENIX Sec'21 30



Porting micro-architectural attacks
to the Web




" IVASCRIPT IS CODE |
EXECUTED [N A SANDBOK SINCE TS W A SANDBO,HGHT:

¥ &
L
lIJ

N
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Porting micro-architectural attacks to the Web

- side-channel attacks on the cache, DRAM, MMU, (...), and
transient execution attacks like Spectre, ret2spec, RIDL, (...),
are coming to web browsers

- very low-level attacks in a high-level language with many
abstraction layers in between

- complex but not impossible to perform
- fundamentally hard or impossible to fix in the browser

32

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P'21. 2021



Side-channel attacks in JavaScript?

- side channels are only doing benign operations
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Side-channel attacks in JavaScript?

- side channels are only doing benign operations

- all side-channel attacks: measuring time
- cache attacks: accessing their own memory
- port contention attacks: executing specific instructions

33



Measuring time



High-resolution timers?

- measure small timing differences: need a high-resolution timer
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High-resolution timers?

- measure small timing differences: need a high-resolution timer
- native: rdtsc, timestamp in CPU cycles

- JavaScript: performance.now( ) has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network

35



Evolution of timers until today

Chrome 44 Chrome 64 Chrome 72
resolution: resolution + jitter: resolution + jitter:
5us 100 ps 5us
} | } ?L | } } >
2015 T 2016 201§ 2019 2020 T
Firefox 41 Firefox 57.0.4 Firefox 79
resolution: resolution:| 20 pis & COOP/COEP:
5ps Firefox 5 resolution:
resolution: P ms 20 s
Firefox 60
resolution + jitter:
ms

36

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P'21. 2021



It was better before

- before September 2015: performance.now( ) had a nanosecond resolution

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015. 37

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/
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It was better before

- before September 2015: performance.now( ) had a nanosecond resolution
- Oren et al. demonstrated cache side-channel attacks in JavaScript

- “fixed” in Firefox 41: rounding to 5 s

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015. 37

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/
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We can do better!

- microsecond resolution is not enough

38

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.
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We can do better!

- microsecond resolution is not enough
- two approaches
1. recover a higher resolution from the available timer

38

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



We can do better!

- microsecond resolution is not enough
- two approaches

1. recover a higher resolution from the available timer
2. build our own high-resolution timer

38

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks
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Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

1+ +1 1+ +1 +1T +1 4]

- to measure with high resolution

- start measurement at clock edge
- increment a variable until next clock edge

- Firefox/Chrome: 500 ns, Tor: 15 us

39



Building a timer: Web worker

- feature to share data: SharedArrayBuffer
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Building a timer: Web worker

- feature to share data: SharedArrayBuffer

- web worker can simultaneously read/write data

- N0 message passing overhead

- one dedicated worker for incrementing the shared variable

- Firefox/Fuzzyfox: 2 ns, Chrome: 15ns

40



- lowering timer resolution is not enough

- adding jitter — makes clock interpolation inefficient (need
to redo the measurements to get rid of noise)

S
e

41

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P'21. 2021



- lowering timer resolution is not enough
- adding jitter — makes clock interpolation inefficient (need
to redo the measurements to get rid of noise)

‘ — has no impact on SharedArrayBuffers!

X

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P'21. 2021



- lowering timer resolution is not enough
- adding jitter — makes clock interpolation inefficient (need

to redo the measurements to get rid of noise)
‘ — has no impact on SharedArrayBuffers!
- browsers are adopting better isolation between websites

[ ]
- (e.g, Site Isolation) to counter transient execution attacks

- back to higher timer resolution for usability — side-channel
attacks are possible again!

41

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P'21. 2021



Cache attacks in browsers



Cache attacks: Challenges with JavaScript

¢ \ g
‘ < /) “ “

1. No high-resolution 2. No instruction to 3. No knowledge about
timers flush the cache physical addresses

43



Eviction sets in JavaScript

[0 cache hit 8 cache miss
| | | | |
» 300 | .
%
©
(@]
S 200} .
o
o]
£ 100 (- *
=
‘ ‘ ! ‘ mjAﬂﬂﬁw‘ ﬂﬂmﬂnpmm

300 350 400 450 500 550 600 650 700 750
Access time [SharedArrayBuffer increments]

— we can distinguish cache hits from cache misses (only ~ 150 cycles difference)!

44

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



Cache attacks in JavaScript: applications

Wikipedia

. i L 1 AN 111 A [ T
spying on user behavior: detect mouse I R ‘
and network activity (W [T |

Github

- covert channel across origins T

[0 IO A OO 010
[ TN TR 77T

- covert channel host-to-VM

- website fingerprinting

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015.

45
A. Shusterman et al. “Robust Website Fingerprinting Through the Cache Occupancy Channel”. In: USENIX Security Symposium. 2019.



Other micro-architectural attacks in browsers?



Other micro-architectural attacks in browsers
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Spectre Attacks: Exploiting Speculative Execution

Paul Kocher!, Jann Horn?, Anders Fogh®, Daniel Genkin®,
Daniel Gruss®, Wemner Haas®, Mike Hamburg”, Moritz Lipp®,
Stefan Mangard®, Thomas Prescher®, Mic

ael Schwarz®, Yuval Yarom®
! Independent (www.paulkocher.com), > Google Project Zero,
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Bonus: you don’t even need JavaScript!

Attack 5: CSS Prime+Probe

<div id="s1">X</div>

<div id="s2">X</div>

<dﬁ¥ id="g3">X</div>
Search non existing string

Probe the LLC Resolve non existing image

</div> -
~ / TIMER
#pp:not ([class*= 'jigbaa'l) #sl {

background-image: url ('https://knbdsd.badserver.com') ;
s
#pp:not ([class*= 'akhevn']) #s2 {

background-image: url ('https://pjemh7.badserver.com') ;
}
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Conclusions

- first paper by Kocher in 1996: 25 years of research in this area

- domain still in expansion: increasing number of papers published since 2015
- any shared component is a potential side-channel vector

- it's really hard not to share a component

- micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

- but it’s still possible to carry these attacks on from web browsers
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Thank you!

Contact

¥ clementine.maurice@inria.fr
¥ @BloodyTangerine
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