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Outline

• Chapter 1 Introduction to micro-architectural attacks
• Chapter 2 Side-channel techniques
• Chapter 3 Side-channel attacks from web browsers



Chapter 1: Introduction to
micro-architectural attacks
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Attacker model

Hardware-based attacks
a.k.a physical attacks

Software-based attacks
a.k.a micro-architectural attacks

vs

Physical access to hardware
→ embedded devices

Co-located or remote attacker
→ complex systems
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Attacker model for software-based attacks

• no physical access to the device

• can execute unprivileged code on the same machine as victim
• what are the scenarios in which this happens?

• you install some program on your machine/smartphone
• you have a virtual machine on some physical machine (cloud)
• some JavaScript runs on a web page
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Micro-architectural attacks: scope

Everyday hardware: servers, workstations, laptops, smartphones…
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Micro-architectural attacks: Two faces of the same coin

Implementation Hardware

&
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Research questions

1. Which software implementation is vulnerable?

2. Which hardware component is vulnerable?
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Type of attacks

active attacks: destroying the vault

passive attacks: listening to the vault internal mechanisms

active attacks: laser, varying temperature, clock glitching...

passive attacks: timing, power consumption, electromag-
netic radiation...
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Fault attacks

• pushing hardware outside of its functional requirements (power, heat,
clock...) to trigger a fault in the system

• most fault attacks are hardware-based ones, but it is possible to trigger
hardware faults in software too (Rowhammer)

• most of the gaming consoles that have been hacked have been by fault
injection

https://media.ccc.de/search/?q=console+hacking

https://media.ccc.de/search/?q=console+hacking
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Side-channel attacks

• exploit the implementation of a system
• based on channels that are outside of the functional specification, i.e., that
are not supposed to carry useful information

• however these channels can leak secret information
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Side channels in ”real life” (1/2)
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Side channels in ”real life” (2/2)

http://content.time.com/time/subscriber/article/0,33009,970860,00.html

https://arstechnica.com/science/2014/08/
researchers-reconstruct-human-speech-by-recording-a-potato-chip-bag/

http://content.time.com/time/subscriber/article/0,33009,970860,00.html
https://arstechnica.com/science/2014/08/researchers-reconstruct-human-speech-by-recording-a-potato-chip-bag/
https://arstechnica.com/science/2014/08/researchers-reconstruct-human-speech-by-recording-a-potato-chip-bag/
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Side channels in computers

• safe software infrastructure→ no bugs, e.g., buffer overflows

• does not mean safe execution
• information leaks because of implementation and hardware
• no “bug” in the sense of a mistake→ lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements
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Hardware vs. implementations

To perform a side-channel attack on some software you need both:

• shared and vulnerable hardware
• no side channel if every memory access takes the same time
• or if you cannot share the hardware component

• a vulnerable implementation
• vulnerable implementation ̸= vulnerable algorithm

• we can attack specific implementations of AES and RSA
• does not mean that AES and RSA are broken
→ not all implementations are created equal

https://access.redhat.com/blogs/766093/posts/1976303

https://access.redhat.com/blogs/766093/posts/1976303
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An example of side channel (1)

post '/login' do
i f not va l id_user ( params [ : user ] )
"Username incorrect"

else
i f ver i fy_password ( params [ : user ] , params [ : password ] )
"Access granted"

else
"Password incorrect"

end
end

end
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An example of side channel (2)

post '/login' do
i f not va l id_user ( params [ : user ] )
"Username or password incorrect"

else
i f ver i fy_password ( params [ : user ] , params [ : password ] )
"Access granted"

else
"Username or password incorrect"

end
end

end
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An example of side channel (3)

post '/login' do
i f not va l id_user ( params [ : user ] )
"Username or password incorrect"
busy_wait ( )

else
i f ver i fy_password ( params [ : user ] , params [ : password ] )
"Access granted"

else
"Username or password incorrect"

end
end

end



Is constant timing enough?
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Shared hardware

shared hardware

CPU

execution
units

data and
instruction

cache

branch
prediction

unit

memory

ring
inter-

connect

memory
bus

DRAM

Each component shared by two processes
is a potential micro-architectural side-channel vector
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Side channels: Caches, DRAM, GPU, TLB, CPU ports, Ring interconnect...!

DRAMA

USENIX Sec'16

Grand Pwning Unit

S&P'18

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

Lord of the Ring(s)

USENIX Sec'21
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Hardware: From small optimizations to side channels

2011 Sandy Bridge

2012 Ivy Bridge

2013 Haswell

2014 Broadwell

2015 Skylake

2016 Kaby Lake

2017 Coffee Lake

2018 Whiskey Lake

2019 Comet Lake/Ice Lake

2020 Tiger Lake

• new micro-architectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch prediction…
• … leading to side channels
• no documentation on this intellectual property
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What can we do with side-channel attacks?
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RSA encryption

Generating an RSA encryption system requires the following steps:

• randomly selecting two prime numbers p and q and calculating n= pq
• choosing a public exponent e. GnuPG uses e= 65537
• calculating a private exponent d= e−1(mod(p− 1)(q− 1))

The private key is the triple (p,q,d).

The decryption function is D(c) = cd mod n

But multiplying c by itself d times is too slow! → we have fast exponentiation
implementations!
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GnuPG 1.4.13 RSA square-and-multiply exponentiation

GnuPG version 1.4.13 (2013)

Algorithm 1: GnuPG 1.4.13 Square-and-multiply exponentiation
Input: base c, exponent d, modulus n
Output: cd mod n
X← 1
for i← bitlen(d) downto 0 do

X← square(X)
X← X mod n
if di = 1 then

X←multiply(X,c)
X← X mod n

end
end
return X
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Attacking GnuPG 1.4.13 RSA exponentiation

• monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent

Yuval Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
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mbedTLS 2.3.0 RSA square-and-multiply exponentiation

mbedTLS version 2.3.0 (2017), “fixes” the issue with a single operation multiply

Algorithm 2: mbedTLS 2.3.0 Square-and-multiply exponentiation
Input: base c, exponent d, modulus n
Output: cd mod n
X← 1
for i← bitlen(d) downto 0 do

X←multiply(X,X)
X← X mod n
if di = 1 then

X←multiply(X,c)
X← X mod n

end
end
return X
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Attacking mbedTLS 2.3.0 RSA exponentiation

• raw Prime+Probe trace on the buffer holding the multiplier c

• processed with a simple moving average
• allows to clearly recover the bits of the secret exponent
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Attacking mbedTLS 2.3.0 RSA exponentiation

• raw Prime+Probe trace on the buffer holding the multiplier c
• processed with a simple moving average
• allows to clearly recover the bits of the secret exponent

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1
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Let’s get back to our example

post '/login' do
i f not va l id_user ( params [ : user ] )
"Username or password incorrect"
busy_wait ( )

else
i f ver i fy_password ( params [ : user ] , params [ : password ] )
"Access granted"

else
"Username or password incorrect"

end
end

end
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Transient execution attacks

• novel class of attacks ̸= side-channel attacks
→ transient execution attacks leak the actual target data
• disclosed in 2018 with Spectre and Meltdown

• SO MANY VARIANTS

Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P. 2019.
Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: USENIX Security Symposium. 2018.
Claudio Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security Symposium. 2019
https://transient.fail/

https://transient.fail/
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Transient execution attacks

• CPU avoids waiting for input data or availability of execution units
→ out-of-order execution and speculation
• sequential semantics is preserved

• some instructions are never committed, i.e., finally executed
• instructions that cause an exception + following instructions
• instructions in branches that are mispredicted

• these instructions are called transient instructions

• architectural state→ everything is fine
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Transient execution attacks

• attacker uses a covert channel to encode the secret
• issue: instructions not committed leave traces in
microarchitecture

• microarchitectural state is not supposed to be visible...
• ... but we know how to recover the state of caches

• microarchitectural state→ everything is not fine

• leaking kernel memory, recovering passwords…
• difficult to fix: lazy error handling was a bug, but speculative
execution is a feature!
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Chapter 2: Side-channel techniques



Cache side-channel attacks
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Memory hierarchy

CPU Registers L1 Cache L2 Cache L3 Cache Memory Disk storage

Data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage
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Set-associative caches

Tag Index OffsetAddress

Cache
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Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address
Several ways per set
Cache line loaded in a specific way depending on the replacement policy
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Cache attacks

• cache attacks→ exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes
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Timing attacks

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only

• here, corner cases: hits and misses
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First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases
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Building the histogram: cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta
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Building the histogram: cache misses

Loop:

1. flush variable (clflush instruction)
2. measure time
3. access variable (always cache miss)
4. measure time
5. update histogram with delta



43

Timing differences
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Finding the threshold

• as high as possible→ most cache hits are below
• no cache miss below

50 100 150 200 250 300 350 400
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Access time [CPU cycles]
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How to measure time accurately? (1/3)

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]
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How to measure time accurately? (2/3)

• do you measure what you think you measure?

• out-of-order execution→ what is really executed
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How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.
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Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM
• used for both covert channels and side-channel attacks
• many variants: Flush+Flush, Evict+Reload, Prime+Scope, Prime+Abort...

David Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P. 2011.
Yuval Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
Dag Arne Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Colin Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
Fangfei Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P. 2015.
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Spatial and temporal resolution

• spatial resolution: what can I monitor? A page? A set? A line?
→ a spatial resolution of a 4KB page means that you cannot distinguish two

memory accesses within a 4KB page
• temporal resolution: how often can I perform a monitoring operation?
→ a temporal resolution of 1ms means that you cannot monitor more than one

event every 1ms: if an event happens every 1µs, you can only capture 0.1% of
events

Both influence the type of attacks that you can perform: an attacker that can only
monitor a 4KB page every minute obtains less information than an attacker that
can monitor a cache line every 100ns.
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Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data
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Flush+Reload: Applications

• cross-VM (memory-deduplication enabled) side channel attacks on
cryptographic primitives:

• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• attacks against pseudorandom number generators
• attacks against RSA key generation
• revival of Bleichenbacher attacks on TLS

Yuval Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
Berk Gülmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE. 2015.
Shaanan Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG”. In: S&P. 2020.
Alejandro Cabrera Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019).
Eyal Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019.
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Flush+Reload: Pros and cons

Pros

high spatial resolution: 1 line
high temporal resolution

Cons

restrictive
1. needs clflush instruction (not

available e.g., on ARM-v7)
2. needs shared memory
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Flush+Reload: Shared memory? (1/2)

Shared library→ shared in physical memory
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Flush+Reload: Shared memory? (1/2)

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

mmap() creates a new mapping in the virtual address space of the calling process.
[...] The contents of a file mapping are initialized using length bytes starting at
offset offset in the file (or other object) referred to by the file descriptor fd.
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Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B
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Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B
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Done!
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Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread



What if there is no shared memory?

There is no memory deduplication, and no accessible shared
library from browsers



What if there is no shared memory?

There is no memory deduplication, and no accessible shared
library from browsers
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Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access
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Prime+Probe: Applications

• cross-VM side channel attacks on crypto implementations:
• El Gamal (sliding window): full key recovery in 12 min.

• tracking user behavior in the browser, in JavaScript
• covert channels between virtual machines in the cloud

Fangfei Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P. 2015.
Yossef Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS. 2015.
Clémentine Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS. 2017.
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Prime+Probe: Pros and cons

Pros

less restrictive
1. no need for clflush
2. no need for shared memory

Cons

• lower spatial resolution: 1 set
• lower temporal resolution:
probe n addresses to evict 1
line

• prone to noise
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Prime+Probe in practice

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set and same slice (issues #1 and #2)
2. an eviction strategy: the order in which we access the eviction set (issue #3)

Pepe Vila et al. “Theory and Practice of Finding Eviction Sets”. In: S&P. 2019.
Clémentine Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID. 2015.
Pepe Vila et al. “CacheQuery: learning replacement policies from hardware caches”. In: PLDI. 2020.
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Port contention side-channel attacks
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Background: Hyper-threading

Simultaneous computation technology of Intel.
• physical cores are shared between logical cores
• abstraction at the OS level

→ hardware resources are shared between logical
cores
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Background: Execution pipeline

• instructions are decomposed in
uops to optimize Out-of-Order
execution

• uops are dispatched to specialized
execution units through CPU ports

• deterministic decomposition of
instructions into uops

Execution Engine

uOps uOps uOps uOps uOps uOps

Thread
0

Thread
1

Decode

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

Scheduler

inst.
fetch

uOps

Memory Subsystem

INT ALU

INT DIV

VEC ALU

AES

VEC STR

FP DIV

BRANCH

VEC MUL

INT ALU

INT MUL

VEC ALU

BIT SCAN

VEC MUL

INT ALU

VEC SHU

VEC ALU

LEA

INT ALU

BRANCH

AGU

LOAD

AGU

LOAD

STORE AGU

uOps

inst.
fetch
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Port contention

No contention

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A A
Execution
engine

All attacker instructions are
executed in a row
→ fast execution time

Contention

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A V A
Execution
engine

Victim instructions delay the
attacker instructions
→ slow execution time

Alejandro Cabrera Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
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Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage
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Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Secret is 1!
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Port contention: applications

• end-to-end attack on a TLS server (OpenSSL 1.1.0h): recovers a P-384 ECDSA
private key
→ secret dependent on double-and-add operations of ec_wNAF_mul point

multiplication

• SMoTherSpectre, a speculative code-reuse attack

Alejandro Cabrera Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
Atri Bhattacharyya et al. “SMoTherSpectre: Exploiting Speculative Execution through Port Contention”. In: CCS. 2019.



68

Port contention: Pros and cons

Pros

• very high spatial resolution: 1
instruction!

• high temporal resolution
• more resistant to noise if
processes do not share a
physical core

• no offline phase of creating
an eviction set

Cons

• restrictive: requires SMT
enabled + co-location on the
same physical core

• mapping from instructions to
port can change from one
generation to another



Chapter 3: Side-channel attacks
from web browsers
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Side-channel attacks in JavaScript?

• JavaScript is code executed in a sandbox

• can’t do anything nasty since it is in a sandbox, right?
• except side channels are only doing benign operations

• all side-channel attacks: measuring time
• cache attacks: accessing their own memory
• port contention attacks: executing specific instructions
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Measuring time
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High-resolution timers?

• measure small timing differences: need a high-resolution timer

• native: rdtsc, timestamp in CPU cycles
• JavaScript: performance.now() has the highest resolution

performance.now()
[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network
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High-resolution timers?
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Evolution of timers until today

2015 2016 2018 2019 2020
Firefox 41
resolution:

5 µs

Firefox 79
& COOP/COEP:
resolution:

20 µs

Firefox 60
resolution + jitter:

1ms

Firefox 59
resolution: 2ms

Firefox 57.0.4
resolution: 20 µs

Chrome 44
resolution:

5 µs

Chrome 64
resolution + jitter:

100 µs

Chrome 72
resolution + jitter:

5 µs

Thomas Rokicki et al. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021
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It was better before

• before September 2015: performance.now() had a nanosecond resolution

• Oren et al. demonstrated cache side-channel attacks in JavaScript
• “fixed” in Firefox 41: rounding to 5 µs

Yossef Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/
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We can do better!

• microsecond resolution is not enough

• two approaches
1. recover a higher resolution from the available timer
2. build our own high-resolution timer

Michael Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.
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Recovering resolution: Clock interpolation

• measure how often we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution

• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs
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Recovering resolution: Edge thresholding

• often sufficient to just see which of two functions takes longer

→ padding so the slow function crosses one more clock edge than the fast one
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Recovering resolution: Edge thresholding

• often sufficient to just see which of two functions takes longer

fslow

ffast Padding

Padding

→ padding so the slow function crosses one more clock edge than the fast one
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Recovering resolution: Edge thresholding

unaligned aligned padded
0

50

100

13 0

8287 100

18
0 0 0pe
rc
en

ta
ge

both correct fslow misclassified ffast misclassified

• nanosecond resolution
• Firefox/Tor: 2 ns, Edge: 10 ns, Chrome: 15 ns



78

Building a timer: Web worker

• feature to share data: SharedArrayBuffer

• web worker can simultaneously read/write data
• no message passing overhead
• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns
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Jitter?

• lowering timer resolution is not enough
• adding jitter→ makes clock interpolation and edge
thresholding inefficient (need to redo the measurements to
get rid of noise)

→ has no impact on SharedArrayBuffers!
• browsers are adopting better isolation between websites
(e.g., Site Isolation) to counter transient execution attacks

• back to higher timer resolution for usability→ side-channel
attacks are possible again!

Thomas Rokicki et al. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021
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Cache attacks in browsers
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Cache attacks: Challenges with JavaScript

1. No high-resolution
timers

2. No instruction to
flush the cache

3. No knowledge about
physical addresses
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#1. No high-resolution timers

We just solved this problem :)

Michael Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.
Thomas Rokicki et al. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021.



83

#2. No instruction to flush the cache

We already solved this problem earlier :)

Let’s use Prime+Probe!

Daniel Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA. 2016.
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#3. No knowledge about physical addresses

• OS optimization: use Transparent Huge Pages (THP, 2MB pages)
• = last 21 bits (2MB) of physical address
• = last 21 bits (2MB) of virtual address

→ which JS array indices?
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#3. Obtaining the beginning of a THP
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Array index [MB]
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• physical pages for these THPs are mapped on-demand
→ page fault when an allocated THP is accessed for the first time

Daniel Gruss et al. “Practical Memory Deduplication Attacks in Sandboxed Javascript”. In: ESORICS. 2015.
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#3. Choosing physical addresses

• we now know the last 21 bits of physical addresses
→ enough to get cache set indexes
→ enough to get DRAM information for some systems, e.g., Sandy Bridge with

DDR3

...678911 1012131416171819202122...

BA0
BA1
BA2

Ch.

15

Rank

Peter Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
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Eviction sets in JavaScript
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→ we can distinguish cache hits from cache misses (only ≈ 150 cycles difference)!

Michael Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



87

Eviction sets in JavaScript

300 350 400 450 500 550 600 650 700 750

100

200

300

Access time [SharedArrayBuffer increments]

Nu
m
be

ro
fc

as
es

cache hit cache miss

→ we can distinguish cache hits from cache misses (only ≈ 150 cycles difference)!

Michael Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.



88

Cache attacks in JavaScript: applications

• spying on user behavior: detect mouse
and network activity

• covert channel
• covert channel cross-VM
• website fingerprinting

Yossef Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS. 2015.
Anatoly Shusterman et al. “Robust Website Fingerprinting Through the Cache Occupancy Channel”. In: USENIX Security Symposium. 2019.



Port contention attacks in browsers
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Port contention attacks: Challenges with JavaScript

1. No high-resolution
timers

2. No control on cores 3. No access to specific
instructions

Thomas Rokicki et al. “Port Contention Goes Portable: Port Contention Side Channels in Web Browsers”. In: ASIA CCS. 2022.
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#1. No high-resolution timers

We just solved this problem :)

Michael Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.
Thomas Rokicki et al. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021.
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#2. No control on cores

• JavaScript does not have control on cores
• scheduler tries to balance the workload of
physical cores

→ exploit JavaScript multi-threading and work
with the scheduler
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#3. No access to specific instructions

• sandboxed
• JIT compilation

• sandboxed
• compiled from another language
• smaller, more atomic instructions
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#3. No access to specific instructions

• sandboxed
• JIT compilation

• sandboxed
• compiled from another language
• smaller, more atomic instructions
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Proof-of-concept native-to-web
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Native : C code runs TZCNT x86 instructions (P1 uop) on all physical cores
Web : WebAssembly repeatedly calls i64.ctz and times the execution
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Port contention side-channel in WebAssembly
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Figure 1: Secret key: 1101001.

• spatial resolution: 1024 native instructions
• similar to other web-based cache attacks
• timers are the main bottleneck
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Port contention covert channel: native-to-web

• Native: C/x86 sender
• Web: WebAssembly receiver

Evaluation:
• 200 bit/s of effective data (best bandwidth
for a web-based covert channel!)

• stress -m 2: 170 bit/s
• stress -m 3: 25 bit/s

Hardware:
CPU Ports

OS

User applications Receiver
JS sandbox

browser

Sender
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More port contention covert channels

VM-to-host

Hardware:
CPU Ports

OS

User applications Receiver
JS sandbox

browser

Sender
Virtual machine

80bit/s bandwidth

Cross-browser

Hardware:
CPU Ports

OS

User applications Receiver
JS sandbox

browser

Sender
JS sandbox

browser

200bit/s bandwidth (physical
layer), across different browsers!



Other micro-architectural attacks in browsers?
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Other micro-architectural attacks in browsers

Thomas Rokicki et al. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021.
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Bonus: you don’t even need JavaScript!

Anatoly Shusterman et al. “Prime+Probe 1, JavaScript 0: Overcoming Browser-based Side-Channel Defenses”. In: USENIX Security Symposium. 2021.



Conclusions
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Conclusions

• any shared component is a potential side-channel vector

• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers
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Conclusions

• any shared component is a potential side-channel vector
• it’s really hard not to share a component
• micro-architectural attacks require a low-level understanding and control
over the components, usually achieved with native code

• but it’s still possible to carry these attacks on from web browsers



Thank you!



Micro-architectural attacks: from CPU to browser

Clémentine Maurice, CNRS
@BloodyTangerine
July 7 2022—Summer School “Cyber in Nancy”, Nancy, France
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