
Reproducible Research:
from Paper to Artifact Evaluation

Clémentine Maurice, CNRS
@BloodyTangerine

EuroSec 2022 keynote - April 5, 2022

Who am I

➞ Researcher at CNRS since 2017, currently working at the CRIStAL lab in Lille, France

➞ Research in micro-architectural security

➞ Co-chaired multiple Artifact Evaluations
○ USENIX WOOT’19: first artifact evaluation of the workshop

○ USENIX Security’21 & ‘22: three cycles each, one last cycle to go for ‘22

➢ 6 cycles of artifact evaluation as of today

➢ credit also goes to my co-chairs Alex Gantman, Thorsten Holz, and Cristiano Giuffrida

2

Outline

1. Reproducible research: wouldn’t it be great?

2. (Personnal) struggles reproducing micro-architectural security

research

3. Artifact Evaluation: a new hope?

3

Reproducible research:
wouldn’t it be great?

4

Imagine…

➞ The year is 2022, you want to compare your method to state of the art. Authors have
open-sourced their code, you compile it, run it, and obtain numbers that you can compare
your work with.

5

Imagine…

➞ The year is 2022, you want to compare your method to state of the art. Authors have
open-sourced their code, you compile it, run it, and obtain numbers that you can compare
your work with.

➞ This is (almost) science fiction.

6

Beyond papers: artifacts

➞ A paper is not just a paper, it is also a lot of data, code, benchmarks…

➞ Problem: it’s actually not trivial to run code in different setups

7

(Personnal) struggles reproducing
micro-architectural security research

8

Micro-architectural security

9

Hardware usually considered as an abstract layer, but possible attacks:

→ Fault attacks: causing hardware errors to bypass protections

→ Side channel attacks: observing side effects of hardware on software execution

Full-software attacks which do not require physical access to hardware

→

Two sides of the same coin

Software implementation Hardware

10

&

Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?

11

Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?

12

Reproducing µ-arch research

➞ 2015: toward the end of my PhD, I want to reproduce a paper on arXiv on L3 Prime+Probe

➞ No code but I’ve been working on cache attacks already and I am confident I can reproduce it

➞ It does not work and I have no idea why

13

Reproducing µ-arch research

➞ 2015: toward the end of my PhD, I want to reproduce a paper on arXiv on L3 Prime+Probe

➞ No code but I’ve been working on cache attacks already and I am confident I can reproduce it

➞ It does not work and I have no idea why

14

Why is it so complicated?

Standards back then

➞ If the paper says it runs on two different CPUs that are somewhat recent, we’re good!

➞ General sentiment: running code on 2+ machines is “just engineering”, so we don’t care

➞ Thankfully, it improved since then!

15

Part I: The Good

a.k.a.
Problems I don’t have

16

I am a minimalist

I don’t need:

➞ fancy clusters
➞ many cores
➞ a lot of memory

Most of my experiments can run on my own laptop

17

Software portability

I don’t (normally) use fancy features that may change from one OS version to the other, or write
code that relies on libraries that will break when updated

→ Software portability is (mostly) fine

18

People running their experiments on clusters be like

19

Part II: The Bad

a.k.a.
Problems I have I can live with

20

Constraints: sharing is not caring

➞ No VM → messes with timing

➞ No sharing the hardware → would pollute the cache/other micro-architectural component

➞ That’s the real reason I typically don’t use fancy clusters

21

Part III: The Ugly

a.k.a.
Problems that have kept me up
many a night

22

My actual nightmares

➞ Any change in the micro-architecture
➞ If it is the same generation, there might be changes in the number of cores, in the size of the

caches, associativity…
○ not the end of the world, but requires to have generic code
○ truly engineering: usually okay for your own code, less so if you have code from somebody else with

magic values…

➞ Roughly one new generation per year, and changes can be quite big
○ that part is the biggest issue

23

Let’s get back to Prime+Probe

24

Set associative caches

25

Caches on Intel CPUs

26

Prime+Probe

27

Prime+Probe

28

Prime+Probe

29

Prime+Probe

30

Prime+Probe

31

Prime+Probe

32

Prime+Probe in practice

Evicting caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)

33

L3 addressing (before Sandy Bridge)

➞ n tag bits are used to address

the slice

34

L3 addressing (after Sandy Bridge)

➞ complex addressing function is

used to address the slice

➞ takes as input bits of the set

index and tag

➞ undocumented hash function

35

Eviction sets on Sandy Bridge and following

36

Long story short… here are the functions

37

C. Maurice et al., Reverse Engineering Intel Last-Level Cache Complex Addressing Using Performance Counters. RAID 2015

Reproducing results on
another machine might be a
scientific contribution
(and a top tier paper)

38

Artifact Evaluation: a new hope?

39

Artifact Evaluation

➞ Problem: it’s actually not trivial to run code in different setups

➞ Solution? Artifact Evaluations!

○ A group of (really patient) people will evaluate the artifact submitted after acceptance of the paper

○ If they can reproduce the results: the paper gets a badge

40

Artifact Evaluation is awesome

➞ Improving science: ideally everybody could replicate the results to have a higher confidence
on the paper, build on it, and compare it with related (passed or future) work

➞ Artifact Evaluation is relatively new in security (compared to, e.g., software engineering), but
everybody agrees that it is awesome

41

People are very happy about it!

42

Artifact Evaluation process (WOOT & USENIX Security until ‘22)

“Does the artifact conform to the expectations set by the paper?”

➞ Authors can submit artifacts after acceptance of their paper -- optional process
○ They submit: the accepted paper, bidding instructions + sw/hw requirements, and the artifact itself

➞ AEC members bid on artifacts (so far nobody had more than 1 artifact each session)

➞ Discussion phase between AEC members and authors: ~12 days
○ AEC members are fantastic, this is quite short and makes for an intense phase

➞ Review phase -- AEC members now have a good idea whether the artifact passed or not: ~ 2 days

➞ If the paper passed the Artifact Evaluation, the authors add a badge before camera ready

43

Artifact quality

 = the artifact conforms to the expectations set by the paper

 ➞ says more about the paper than the artifact, very variable artifact quality

44

Improving artifact quality

Feedback from WOOT ‘19 AEC members from what helped or would have helped them:

1. Good documentation

2. Providing a step-by-step running example or automated test cases

3. Packaging: VM, docker… anything that avoids Dependency Hell

4. (Providing access to a remote machine)

https://xkcd.com/1579/
45

Artifact Evaluation is a lot of work

Feedback from WOOT ‘19 AEC

➞ Median time: 1 day, up to 4 days

➞ Requires to be very reactive

➞ Important point: the evaluation is not
adversarial! AEC members want to make it
work!

All the kudos to AEC members!

46

Artifact sharing in the security community

➞ 20% to 30% of accepted papers
participated to the Artifact Evaluation

➞ That’s way less than system conferences!
84% of OSDI ‘21 accepted papers
participated to AE

➞ No big trend in terms of artifact sharing
between workshops and bigger
conferences

➞ Most submitted artifacts are accepted,
most of them are code

Caveat of these numbers: only reflect papers gone through the formal evaluation process, not informal sharing
47

Motivators (1/3)

We collectively agree that Artifact Evaluation Is Awesome, yet less than 30% of papers have an
artifact: what can we do?

➞ We have limited time and there
are very little incentives

48

Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”

49

Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”

STICKERS! Everybody loves stickers!

50

Motivators: long term solutions (3/3)

➞ The immense majority of researchers want to do impactful work: intrinsic motivation

➞ More powerful incentives would not hurt, but we need to rethink how we evaluate research

○ Is “number of accepted papers” a good metric? (no, but we already knew that)

○ Can Artifact Evaluations be taken into account in hiring committees, tenure track committees?

○ A good start: in our regular evaluations, my employer (CNRS) asks about software production

51

A few hurdles we experienced

➞ Tight timeline that has been retrofitted to fit AE, e.g., shepherding and AE at the same time

➞ Complicated to fix hard and fast rules for all artifacts due to the diversity
○ I feel like we run into one or more unexpected questions each AE session

➞ Sometimes only a part of the paper has a corresponding artifact (for various reasons)
○ Not ideal, but we asked the authors to clarify this in their paper for camera ready

52

Changes at USENIX Security ‘22

1. More badges!

More complete badges by USENIX (ACM has equivalent badges), already used at OSDI

53

available for retrieval,
permanently and
publicly

documented,
completeness,
successfully executed

independently
repeatable
experiments

Changes at USENIX Security ‘22

2. More time!

➞ Past Artifact Evaluations were performed between
notification and camera ready

➞ Pro: badges can be added to the final paper

➞ Cons: only leaves around two weeks of actual evaluation
and very little time for shepherding

➞ We are now starting the evaluation after camera ready!

54

Changes at USENIX Security ‘22

3. Unified appendix!

➞ Standard Appendix documenting the
program, dependencies, installation, usage,
expected results…

➞ Goals: relate claims of the paper to the
artifact, make it easier to reuse (and to
review!)

55

https://www.usenix.org/conference/usenixsecurity22/artifact-appendix-guidelines

Challenges (1/n)

What about hardware?

➞ Hardware requirements can be problematic
for the evaluation

➞ Hardware availability will be an issue in a
few years

56

Challenges (2/n)

Actually… what about software?

➞ Authors can package beautifully their artifacts
to help with software requirements

➞ But code probably won’t be maintained forever

➞ Artifact Evaluation probably has a timestamp

57

Challenges (3/n)

Licensing can get in the way of the evaluation

➞ Some artifacts may include proprietary
code, e.g., SPEC CPU benchmarks are
only available for purchase

58

Challenges (4/n)

It would be great for Artifact Evaluation to happen during reviews instead of after acceptance

➞ Where to find the workforce?

➞ ACSAC has opened AE after round 1 of
reviews to help decide borderline papers

➞ CCS is strongly encouraging authors to
provide artifacts but without an AE

59

https://secartifacts.github.io/
is live!

Thanks to Anjo Vahldiek-Oberwagner,
Cristiano Giuffrida, Thorsten Holz!

60

Thank you!

61

