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Who am I

➞ Researcher at CNRS since 2017, currently working at the CRIStAL lab in Lille, France

➞ Research in micro-architectural security

➞ Co-chaired multiple Artifact Evaluations
○ USENIX WOOT’19: first artifact evaluation of the workshop

○ USENIX Security’21 & ‘22: three cycles each, one last cycle to go for ‘22

➢ 6 cycles of artifact evaluation as of today

➢ credit also goes to my co-chairs Alex Gantman, Thorsten Holz, and Cristiano Giuffrida
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Outline

1. Reproducible research: wouldn’t it be great?

2. (Personnal) struggles reproducing micro-architectural security 

research

3. Artifact Evaluation: a new hope?
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Reproducible research: 
wouldn’t it be great?

4



Imagine…

➞ The year is 2022, you want to compare your method to state of the art. Authors have 
open-sourced their code, you compile it, run it, and obtain numbers that you can compare 
your work with. 
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Imagine…

➞ The year is 2022, you want to compare your method to state of the art. Authors have 
open-sourced their code, you compile it, run it, and obtain numbers that you can compare 
your work with. 

➞ This is (almost) science fiction.
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Beyond papers: artifacts

➞ A paper is not just a paper, it is also a lot of data, code, benchmarks…

➞ Problem: it’s actually not trivial to run code in different setups
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(Personnal) struggles reproducing 
micro-architectural security research
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Micro-architectural security
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Hardware usually considered as an abstract layer, but possible attacks: 

→ Fault attacks: causing hardware errors to bypass protections

→ Side channel attacks: observing side effects of hardware on software execution

Full-software attacks which do not require physical access to hardware 
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Two sides of the same coin

Software implementation Hardware
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Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?
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Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?

12



Reproducing µ-arch research

➞ 2015: toward the end of my PhD, I want to reproduce a paper on arXiv on L3 Prime+Probe

➞ No code but I’ve been working on cache attacks already and I am confident I can reproduce it

➞ It does not work and I have no idea why
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Reproducing µ-arch research

➞ 2015: toward the end of my PhD, I want to reproduce a paper on arXiv on L3 Prime+Probe

➞ No code but I’ve been working on cache attacks already and I am confident I can reproduce it

➞ It does not work and I have no idea why

14

Why is it so complicated?



Standards back then

➞ If the paper says it runs on two different CPUs that are somewhat recent, we’re good!

➞ General sentiment: running code on 2+ machines is “just engineering”, so we don’t care

➞ Thankfully, it improved since then!
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Part I: The Good

a.k.a.
Problems I don’t have
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I am a minimalist

I don’t need:

➞ fancy clusters
➞ many cores
➞ a lot of memory

Most of my experiments can run on my own laptop
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Software portability

I don’t (normally) use fancy features that may change from one OS version to the other, or write 
code that relies on libraries that will break when updated

→ Software portability is (mostly) fine
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People running their experiments on clusters be like
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Part II: The Bad

a.k.a.
Problems I have I can live with
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Constraints: sharing is not caring

➞ No VM → messes with timing

➞ No sharing the hardware → would pollute the cache/other micro-architectural component

➞ That’s the real reason I typically don’t use fancy clusters
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Part III: The Ugly

a.k.a.
Problems that have kept me up 
many a night
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My actual nightmares

➞ Any change in the micro-architecture
➞ If it is the same generation, there might be changes in the number of cores, in the size of the 

caches, associativity…
○ not the end of the world, but requires to have generic code
○ truly engineering: usually okay for your own code, less so if you have code from somebody else with 

magic values…

➞ Roughly one new generation per year, and changes can be quite big
○ that part is the biggest issue
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Let’s get back to Prime+Probe
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Set associative caches
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Caches on Intel CPUs
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Prime+Probe
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Prime+Probe

28



Prime+Probe
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Prime+Probe
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Prime+Probe
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Prime+Probe
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Prime+Probe in practice

Evicting caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)
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L3 addressing (before Sandy Bridge)

➞ n tag bits are used to address 

the slice
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L3 addressing (after Sandy Bridge)

➞ complex addressing function is 

used to address the slice

➞ takes as input bits of the set 

index and tag

➞ undocumented hash function
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Eviction sets on Sandy Bridge and following 
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Long story short… here are the functions
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C. Maurice et al., Reverse Engineering Intel Last-Level Cache Complex Addressing Using Performance Counters. RAID 2015



Reproducing results on 
another machine might be a 
scientific contribution
(and a top tier paper)
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Artifact Evaluation: a new hope?
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Artifact Evaluation

➞ Problem: it’s actually not trivial to run code in different setups

➞ Solution? Artifact Evaluations!

○ A group of (really patient) people will evaluate the artifact submitted after acceptance of the paper

○ If they can reproduce the results: the paper gets a badge
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Artifact Evaluation is awesome

➞ Improving science: ideally everybody could replicate the results to have a higher confidence 
on the paper, build on it, and compare it with related (passed or future) work

➞ Artifact Evaluation is relatively new in security (compared to, e.g., software engineering), but 
everybody agrees that it is awesome
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People are very happy about it!
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Artifact Evaluation process (WOOT & USENIX Security until ‘22)

“Does the artifact conform to the expectations set by the paper?”

➞ Authors can submit artifacts after acceptance of their paper -- optional process
○ They submit: the accepted paper, bidding instructions + sw/hw requirements, and the artifact itself

➞ AEC members bid on artifacts (so far nobody had more than 1 artifact each session)

➞ Discussion phase between AEC members and authors: ~12 days
○ AEC members are fantastic, this is quite short and makes for an intense phase

➞ Review phase -- AEC members now have a good idea whether the artifact passed or not: ~ 2 days

➞ If the paper passed the Artifact Evaluation, the authors add a badge before camera ready
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Artifact quality

                =  the artifact conforms to the expectations set by the paper

                ➞  says more about the paper than the artifact, very variable artifact quality
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Improving artifact quality

Feedback from WOOT ‘19 AEC members from what helped or would have helped them: 

1. Good documentation

2. Providing a step-by-step running example or automated test cases

3. Packaging: VM, docker… anything that avoids Dependency Hell

4. (Providing access to a remote machine)

https://xkcd.com/1579/
45



Artifact Evaluation is a lot of work

Feedback from WOOT ‘19 AEC

➞ Median time: 1 day, up to 4 days

➞ Requires to be very reactive

➞ Important point: the evaluation is not 
adversarial! AEC members want to make it 
work!

All the kudos to AEC members!
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Artifact sharing in the security community

➞ 20% to 30% of accepted papers 
participated to the Artifact Evaluation

➞ That’s way less than system conferences! 
84% of OSDI ‘21 accepted papers 
participated to AE

➞ No big trend in terms of artifact sharing 
between workshops and bigger 
conferences

➞ Most submitted artifacts are accepted, 
most of them are code

Caveat of these numbers: only reflect papers gone through the formal evaluation process, not informal sharing
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Motivators (1/3)

We collectively agree that Artifact Evaluation Is Awesome, yet less than 30% of papers have an 
artifact: what can we do? 

➞ We have limited time and there 
are very little incentives
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Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”
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Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”

STICKERS! Everybody loves stickers!
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Motivators: long term solutions (3/3)

➞ The immense majority of researchers want to do impactful work: intrinsic motivation

➞ More powerful incentives would not hurt, but we need to rethink how we evaluate research

○ Is “number of accepted papers” a good metric? (no, but we already knew that)

○ Can Artifact Evaluations be taken into account in hiring committees, tenure track committees?

○ A good start: in our regular evaluations, my employer (CNRS) asks about software production
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A few hurdles we experienced

➞ Tight timeline that has been retrofitted to fit AE, e.g., shepherding and AE at the same time

➞ Complicated to fix hard and fast rules for all artifacts due to the diversity
○ I feel like we run into one or more unexpected questions each AE session

➞ Sometimes only a part of the paper has a corresponding artifact (for various reasons)
○ Not ideal, but we asked the authors to clarify this in their paper for camera ready
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Changes at USENIX Security ‘22

1.  More badges!

More complete badges by USENIX (ACM has equivalent badges), already used at OSDI
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available for retrieval, 
permanently and 
publicly

documented, 
completeness, 
successfully executed

independently 
repeatable 
experiments



Changes at USENIX Security ‘22

2.  More time! 

➞ Past Artifact Evaluations were performed between 
notification and camera ready

➞ Pro: badges can be added to the final paper

➞ Cons: only leaves around two weeks of actual evaluation 
and very little time for shepherding

➞ We are now starting the evaluation after camera ready!
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Changes at USENIX Security ‘22

3.  Unified appendix! 

➞ Standard Appendix documenting the 
program, dependencies, installation, usage, 
expected results…

➞ Goals: relate claims of the paper to the 
artifact, make it easier to reuse (and to 
review!)
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https://www.usenix.org/conference/usenixsecurity22/artifact-appendix-guidelines



Challenges (1/n)

What about hardware?

➞ Hardware requirements can be problematic 
for the evaluation

➞ Hardware availability will be an issue in a 
few years
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Challenges (2/n)

Actually… what about software?

➞ Authors can package beautifully their artifacts 
to help with software requirements

➞ But code probably won’t be maintained forever

➞ Artifact Evaluation probably has a timestamp
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Challenges (3/n)

Licensing can get in the way of the evaluation

➞ Some artifacts may include proprietary 
code, e.g., SPEC CPU benchmarks are 
only available for purchase
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Challenges (4/n)

It would be great for Artifact Evaluation to happen during reviews instead of after acceptance 

➞ Where to find the workforce?

➞ ACSAC has opened AE after round 1 of 
reviews to help decide borderline papers

➞ CCS is strongly encouraging authors to 
provide artifacts but without an AE
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https://secartifacts.github.io/
is live!

Thanks to Anjo Vahldiek-Oberwagner, 
Cristiano Giuffrida, Thorsten Holz!
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Thank you!

61


