
Security: Lecture 3
Attacking all the things!

Clémentine Maurice
L3 ENS - 2020/2021

Projects

Don’t forget to send me the ordered list of your preferences on October 5!

https://cmaurice.fr/teaching/ENS/

2

https://cmaurice.fr/teaching/ENS/

Today’s lecture

■ Attacking software: intro to buffer overflows

■ Attacking hardware: intro to side-channel attacks

3

Attacking software
Memory corruption and buffer overflows

4

Memory corruption: does it really matter?

■ Attacks known since ~30 years, heavily exploited since 20 years

■ Why isn’t the problem solved?

■ We know some solutions
○ design software with a safe language, check bounds
○ compiler techniques
○ system-level techniques

■ None
○ solve all problems
○ are practical enough
○ are deployed everywhere

5

Source: Matt Miller, Microsoft (2019) 6

Buffer overflow: concept

■ program allocates memory for a buffer

......

memory allocated for a buffer memory allocated for the rest of
the program

7

Buffer overflow: concept

■ program allocates memory for a buffer

■ program writes in the buffer

......

memory allocated for a buffer

A A A A

memory allocated for the rest of
the program

8

Buffer overflow: concept

■ program allocates memory for a buffer

■ program writes in the buffer

■ and overflows that buffer, overwriting
other parts of the program

A A A

memory allocated for a buffer

A A A A

memory allocated for the rest of
the program

9

That’s seriously the whole concept

Anatomy of a program in memory

■ Stack
○ call stack (8MB limit)
○ arguments, return address, local variables of each function

■ Heap
○ dynamically allocated as needed

■ Data
○ statically allocated data (global vars, static vars, constants)

■ Text/shared libraries
○ executable machine instructions, read-only

Stack

Text

Heap

Data

Shared
libraries

} 8MB

0x000000

0x00007FFFFFFFFFFF

10

The stack

■ Program = sequences of instructions to execute

■ Logically divided in functions that call each other

■ Which instruction to execute?
○ usually the next address
○ not the case if there is a function call → when a function returns, CPU needs to know where to go back to

■ The call stack keeps track of that!

■ Call stack = LIFO (last in, first out), composed of different stack frames (for each function)

■ Stack frame = arguments, return address, local variables

11

Stack overflow, buffer overflow...

Stack overflow ≠ buffer overflow ≠ stack-based buffer overflow

■ Stack overflow: execution stack grows beyond the memory that is reserved for it (e.g. recursion

that never ends)

■ Buffer overflow: a program writes beyond the end of the memory allocated for any buffer
○ stack-based buffer overflow → buffer is based on the stack (“classic” buffer overflow, example to come)
○ heap-based buffer overflow → buffer is based on the heap (more complicated)

12

Sample program: code
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

void foo (char* request_from_user) {
 volatile int admin;
 char buffer[4];
 admin = 0;
 strcpy(buffer, request_from_user);
 if(admin != 0){
 printf("you are super admin\n");
 } else {
 printf("try again!\n");
 }
}

int main (int argc, char **argv) {
 foo(argv[1]);
 exit(EXIT_SUCCESS);
}

13

Sample program: execution

Compile with gcc -fno-stack-protector -g -o test1 test1.c

Run:

$./test1 1234
try again!

14

What happens in memory?

stack

high addresses

low addresses

main stack frame

params

return address

locals

high addresses

low addresses

main stack frame

foo stack frame

params

return address

locals

params

return address

locals

high addresses

low addresses

main stack frame

params

return address

locals

main calls
foo

foo calls
strcpy

high addresses

low addresses

main stack frame

foo stack frame

params

return address

locals

params

return address

locals

strcpy
returns

high addresses

low addresses

main stack frame

foo stack frame

params

return address

locals

params

return address

locals

strcpy stack
frame
...

foo
returns

15

Stack-based buffer overflow 101

$./test1 12341
you are now super admin

What happened?

16

Stack-based buffer overflow 101

stack

high addresses

low addresses

main stack frame

foo stack frame

params

return address

locals

param

return address

admin

buffer

high addresses

low addresses

main stack frame

foo stack frame

params

return address

locals

param

return address

1

1 2 3 4

... ...

Writing out of the bounds of

buffer corrupted the “admin”
variable on the stack

after call to
strcpy

17

Can we do better?

So far we have corrupted one variable, any other ideas of what we can do?

18

Can we do better?

So far we have corrupted one variable, any other ideas of what we can do?

Let’s corrupt the return address!

19

Two main attack techniques

code injection attacks

code reuse attacks

20

Code injection attacks: general principle

Code injection = adding a new node to the CFG

■ Adversary can execute arbitrary malicious code
○ open a remote console (classical shellcode)
○ exploit further vulnerabilities in the OS kernel to

install a virus or a backdoor
A

BC

D

control flow
graph (CFG)

(1) buffer
overflow

(2) code
injection

(3) control
flow deviation

21

Code injection attacks

stack

high addresses

low addresses

main stack frame

foo stack frame

params

return address

locals

param

return address

admin

buffer

high addresses

low addresses

main stack frame

foo stack frame

params

return address

locals

param

return address

malicious code

... ...

■ Writing out of the bounds of

buffer corrupted the return
address

■ The attacker injects malicious

code inside the buffer

■ The return address now

points to the malicious code

after call to
strcpy

22

What does the attacker executes?

23

What does the attacker executes?

You have one wish, what do you do?

24

What does the attacker executes?

You have one wish, what do you do?

Wish for more wishes!

The attacker usually launches a shell, i.e., a program that interfaces between the user and the OS services

→ the attacker can now launch any program

25

Code reuse attacks: general principle

Code reuse = adding a new path to the CFG

■ Adversary is limited to the code nodes that are

available in the CFG

■ Typically, the adversary will chain pieces of code

(gadgets) together to execute arbitrary codeA

BC

control flow
graph (CFG)

(1) buffer
overflow

(2) control
flow deviation

26

Code injection is more powerful

So why using code reuse attacks?

27

Mitigations

■ Stack canaries
○ insert a known random value (the “canary”) on the stack before the return address
○ compiler inserts code that adds the canary and checks the canary value before using the return address
→ canaries can be guessed, obtained with memory leaks

■ Address-Space Layout Randomization
○ randomize start or base address of program code, libraries code, heap/stack/data regions
→ memory leaks used to learn memory layout

■ Non executable memories (NX/DEP)
○ memory is either writable or executable but not both (W xor X)
→ defeated by return-to-libc attacks and Return Oriented Programming (ROP) = code reuse attacks

In practice, supporting NX + ASLR + canaries makes attacks much harder but isn’t bullet proof!

28

Sample program: let’s try again

Compile with gcc -g -o test1 test1.c

(We remove the -fno-stack-protector from last time)

Run:

$./test1 12341
try again!
*** stack smashing detected ***: terminated
[1] 123865 abort (core dumped) ./test1 12341

29

Other mitigations?

■ How about stop using languages that allow such things? Memory-safe computer languages
○ Python
○ Java
○ C#
○ JavaScript
○ Go
○ Rust

■ Note: doesn’t mean the programs are safe, you can write insecure programs in any language

■ So why do we continue using C/C++?
○ performance
○ legacy code
○ performance

30

Source: Matt Miller, Microsoft (2019) 31

More memory corruption

■ Integer overflow

■ Use after free

■ Heap-based buffer overflow

■ ...

All the fun is in project #7!

32

Attacking hardware
Side-channel attacks

33

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

34

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

0

0000

0.3ms

35

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

0

1

1000

0.6ms

36

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

0

1
2

2000

0.4ms

37

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

0

1
2

3
4 5 6 7

8 9

1???

38

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

0 1
2 3 4 5 6

7
8 9

17??

39

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

0
1

2 3 4
5

6 7

8

9

178?

40

PIN code verification

bool testPIN(int code [4]) {
 for (int i=0; i<4; i++) {
 if (code[i] != code_ref[i])
 return false;
 }
 return true;
}

0 1
2

3 4 5 6 7 8

9

1789

41

In real life...

■ Computations are not running in a vacuum, they are running on actual hardware

■ If an attacker has access to the device, or can run programs on the device, threat model changes

■ Attacker can

○ interfere with hardware

○ observe side effects

42

Example: PS3 firmware modification

43

Example: PS3 firmware modification

What happened?

1. Dump code: requires physical access or a software vulnerability

2. Understand what it does: reverse-engineering tools

3. Modify it to remove the security
4. Reload code

More console hacking: https://media.ccc.de/search/?q=console+hacking

44

https://media.ccc.de/search/?q=console+hacking

Example: Relay attacks

■ One thief near the car, the other near

the key

■ Capture the signal of the key and

relay it to the car, as if the key was

close to the car

■ Use of radio amplification to boost the

signal of the key

45

The security of a product
cannot rely only
on software tests

46

Physical attacks

How to attack a vault?

47

Physical attacks

active attacks: destroying the vault

passive attacks: listening to the vault internal mechanisms

48

Physical attacks

active attacks: destroying the vault

passive attacks: listening to the vault internal mechanisms

49

Physical attacks

active attacks: destroying the vault

passive attacks: listening to the vault internal mechanisms

active attacks: laser, varying temperature, clock glitching, hardware trojans...

passive attacks: timing, power consumption, electromagnetic radiation...

50

Physical attacks

active attacks: destroying the vault

passive attacks: listening to the vault internal mechanisms

active attacks: laser, varying temperature, clock glitching, hardware trojans...

passive attacks: timing, power consumption, electromagnetic radiation...

51

Side-channel attacks in a nutshell

■ Timing

■ Power consumption

■ Electromagnetic radiation (EM)

■ Sound

■ ...

crypto
algorithm

plaintext ciphertext

key

side channels

52

Side channels

■ Exploits the implementation of a system

■ Based on channels that are outside of the software functional specification, i.e., that are not

supposed to carry useful information

■ However these channels can leak secret information

■ Usually based on some “physical” channel, e.g., timing, power consumption, EM, sound, light...

53

Hardware-based and software-based

Physical access

■ on embedded devices

Remote access/co-located software

■ on more complex machines

54

Software-based side channels

■ new microarchitectures yearly

■ performance improvement ≈ 5%

■ very small optimizations: caches, branch prediction…

■ … leading to side channels

■ no documentation on this intellectual property

55

Software-based side channels

56

Cache attacks

■ Exploit timing differences of memory accesses

○ data is in the cache → cache hit → fast access

○ data is not in the cache → cache miss → retrieve data from DRAM → slow access

■ Attacker monitor which cache lines are accessed, not the content

57

Attacking an RSA implementation

Generating an RSA encryption system requires the following steps:

■ randomly selecting two prime numbers p and q and calculating n = pq
■ choosing a public exponent e. GnuPG uses e = 65537
■ calculating a private exponent

The private key is the triple (p, q, d).

The decrypting function is

58

exponentiation

Attacking an RSA implementation

Generating an RSA encryption system requires the following steps:

■ randomly selecting two prime numbers p and q and calculating n = pq
■ choosing a public exponent e. GnuPG uses e = 65537
■ calculating a private exponent

The private key is the triple (p, q, d).

The decrypting function is

But multiplying c by itself d times is too slow!

59

exponentiation

RSA square-and-multiply exponentiation (1/2)

60

RSA square-and-multiply exponentiation (1/2)

e is a secret value!

61

RSA square-and-multiply exponentiation (2/2)

Cache attack on the buffer holding the mutiplier b

62

RSA square-and-multiply exponentiation (2/2)

Cache attack on the buffer holding the mutiplier b

63

RSA square-and-multiply exponentiation (2/2)

Cache attack on the buffer holding the mutiplier b → recovers bits of the exponent

64

Algorithm vs. Implementation

RSA, the algorithm, is not broken.

One (actually several) implementation(s) of RSA is (are) broken.

Not all implementations are created equal!

65

“Constant time”

■ What we call “constant-time” in cryptography does not equate to constant timing

■ Constant timing is not necessary for a secure implementation…

■ … If those variations have no relation to any secret information
■ Instead, “constant-time” means:

○ no memory access dependent on secret value
○ no branches dependent on secret value
○ no secret value as an input of instructions that are known to have a variable-time execution (e.g. DIV on x86:

smaller values divide faster)

66

Wrapping up

67

Wrapping up

■ Security is a very large domain
■ Challenges ranging from the very theoretical to the very practical

■ We’re not covering a lot in this lecture

■ But this is why you have the projects!

■ Presentations on December 10
○ from 9 to 12
○ all groups attend the presentations: mini seminar

68

