
Security: Lecture 1
It’s all about the threat model

Clémentine Maurice
L3 ENS - 2020/2021

Admin

2

About me

■ Chargée de Recherche CNRS at IRISA since 2017, EMSEC group https://www.irisa.fr/emsec/

■ Previously:
○ 2012-2015: PhD from Eurecom/Technicolor
○ 2016-2017: postdoc at TU Graz (Austria)

■ Security research about:
○ Side channels on micro-architecture
○ Software-based fault attacks

3

https://www.irisa.fr/emsec/

Course objectives

■ This is an introductory course that aims at making you “security aware”

■ 6 hours of lectures is not a lot for a field that vast

■ Get a feeling of the different topics in computer security

■ Get a feeling of the different research challenges
■ Not (just) technical details

■ Give you the security mindset: how to think like an attacker?

■ Security is a process: there is no magic tool to make vulnerabilities disappear

4

Course format

10 sessions:

■ 3 lectures

■ 6 project sessions

■ Project presentations on December 10
○ Aimed at being a mini-seminar to complete the lectures

5

Grading

■ Project report due December 4: 50% of your grade
○ 3 to 5 pages
○ summarize the context, problem(s) you faced and the method you used

■ Project presentations on December 10: 50% of your grade
○ 20 minutes presentation + 10 minutes of questions
○ summarize background and the two articles given, explain the aim of your project and the steps you took

■ Final report due December 17
○ we will ask for corrections if needed, so that we can distribute your reports to the whole class
○ you can get up to 2 bonus points if you made significant improvements!

6

Projects

1. Adversarial machine learning

2. 802.11 fingerprinting

3. Password cracking

4. Automated bug finding

5. Reverse-engineering

6. Crypto in the real world

7. Buffer overflows

Projects will be tutored by me and Guillaume Didier (TA, PhD student)

https://cmaurice.fr/teaching/ENS/

7

https://cmaurice.fr/teaching/ENS/

Questions?

I prefer the course to be interactive and I don’t bite

Don’t hesitate to ask questions! You’re probably not the only one with the question

Sometimes I may just be wrong (hopefully not too often)

You can also reach me by email: clementine.maurice@irisa.fr

8

Introduction

9

Why should you care?

Security impacts everybody’s day-to-day life

Security impacts your day-to-day life

User: make safe decisions

Developer: design and build secure systems

Researcher: identify flaws and new classes of vulnerabilities, propose mitigations

10

Security is everywhere (in the media)

Ransomware

11

Security is everywhere (in the media)

IoT botnet

12

Security is everywhere (in the media)

Hardware vulnerabilities

13

Security is everywhere (in the media)

Data breach

14

(In)security costs a lot of money

15

Good and bad hackers

RFC 1392

■ Hacker: A person who delights in having an intimate understanding of the internal workings of a

system, computers and computer networks in particular. The term is often misused in a pejorative

context, where "cracker" would be the correct term.

■ Cracker: A cracker is an individual who attempts to access computer systems without

authorization. These individuals are often malicious, as opposed to hackers, and have many means

at their disposal for breaking into a system.

16

Good and bad hackers

Malicious hacking/cracking is illegal

« Le fait d’accéder ou de se maintenir, frauduleusement, dans tout ou partie d’un système de traitement automatisé de données est puni de deux ans
d’emprisonnement et de 30000 euros d’amende. Lorsqu’il en est résulté soit la suppression ou la modification de données contenues dans le système, soit une

altération du fonctionnement de ce système, la peine est de trois ans d’emprisonnement et de 45000 euros d’amende. »

However, discussing vulnerabilities and how they are actually exploited is useful to educate and increase
awareness

17

Academia and hackers

■ Researchers in computer science, especially security, publish more in conferences than journals

■ Dedicated academic security conferences: S&P, USENIX Security, CCS, NDSS

■ Security tracks or workshops in most major academic conferences of other domains, e.g.
○ ICSE (software engineering)
○ ISCA (micro-architecture)
○ FM (formal methods)
○ WWW (web)
○ ICML (machine learning)
○ INFOCOM (network)

■ Also hacker conferences: Chaos Communication Congress (CCC), Black Hat, DEF CON…

18

Definitions and principles

19

Security

Integrity: Data has not been altered or destroyed in an unauthorized manner

Confidentiality: Information is not made available or disclosed to unauthorized individuals, entities or

processes

Availability: Data/service is accessible and usable upon demand by an authorized entity. Failure to meet

this goal is called a denial of service

→ Data that is stored in a system that is unpowered and unplugged from any network has high integrity

and confidentiality, but low availability…

20

Bug, vulnerabilities, attacks...

A human error may introduce a bug or fault

If the fault is triggered, it generates a failure (e.g., Windows’ blue screen of death)

If the fault is security-related, it is called a vulnerability → not all bugs are vulnerabilities

An attack happens when the vulnerability is triggered, or exploited → not all vulnerabilities can be easily

exploited

A zero-day refers to a vulnerability that has just been revealed, for which there is therefore no patch

(developers had zero day to issue a patch)

21

Security overview

Architecture: security considerations when designing the application

Implementation: security considerations when writing the application

Operation: security considerations when the application is in production

22

Architecture and design

■ Validation of requirements = building the right model

■ Verification of design = building the model right

■ Common problems
○ authentication and privileges

■ session replay
■ principle of least privilege

○ communication protocol design
■ sniffing, man-in-the-middle
■ session hijacking

○ denial of service

23

Implementation

■ Classic vulnerabilities (often programming-language-specific)

■ Common problems
○ buffer overflows

■ static: stack-based buffer overflows
■ dynamic: heap-based buffer overflows

○ input validation
■ URL encoding
■ document root escape
■ SQL injection

○ backdoors

24

Operation

■ Decisions made after software is deployed

■ Often not under developer’s control

■ Common problems
○ denial of service (DOS)

■ network DOS
■ distributed DOS, zombies

○ administration problems
■ weak passwords
■ password cracking
■ unsafe defaults

25

Kerckhoffs’ principle

■ “A cryptosystem should be secure even if everything about the system, except the key, is public
knowledge”

■ Security through obscurity is considered dangerous

■ Idea sometimes debated, pros and cons?

26

Kerckhoffs’ principle

■ Basic idea: given enough time, somebody will be able to figure out your “secure design”, at which

point it will be trivially broken

■ Today’s crypto standards are open: the implementation of AES and RSA is well known, and the

security relies not on the fact that the attacker does not know the algorithm, but on the fact that

the attacker does not know the key (and it would take them millions of years to guess it)

27

Principle of least privilege

■ Only granting permissions that are necessary and sufficient for a particular task

■ Applicable to processes, users, services…

■ Examples?

28

Principle of least privilege

■ Only granting permissions that are necessary and sufficient for a particular task

■ Applicable to processes, users, services…

■ Examples in military contexts (need-to-know), but usage throughout all modern systems
○ not all accounts have administrator rights
○ fine-grained permissions on mobile devices → a flashlight or a simple game should not ask for permission to

access your contacts!
○ sandboxes like JavaScript → a website does not have arbitrary execution on your machine
○ kernel mode/user mode → vulnerabilities in one application cannot be used to exploit the rest of the machine

29

Don’t trust your input

■ Computers are dumb: they do exactly what we ask them to do, not less, not more

■ Input data is “just” a sequence of symbols or bytes, but programmers make assumptions, e.g., “this

is a name”, “this is a file”, …

■ Unexpected input is a large source of software vulnerabilities: buffer overflows, SQL injections,

XSS

■ Think like an attacker: what should I input in this system to obtain what I want?

■ Non trivial problem

30

Minimize the attack surface

■ Minimize the “code” surface
○ number of open sockets, services, services running by default, services running with high privileges
○ number of dynamic content web pages
○ number of files & directories with weak access control
→ every additional line of code has a potential vulnerability

■ Minimize the “time” surface
○ automatically lock screen after n minutes
○ zero-out memory containing sensitive information (e.g., decrypted information) as soon as it’s no longer

needed
○ other example?

31

Challenges in security

32

Why good people write bad code

■ Technical factors
○ algorithm complexity, multi-threaded applications, multi-user systems, composition (Mars Climate Orbiter),

consequences of small changes hard to predict (Apple goto fail)

■ Economic factors
○ deadlines, security is not a feature, insufficient funding, legacy software, open-source/closed-source

■ Human factors
○ poor risk assessment, mental models: assume software is used for specific task, only check for understood

errors

33

Systems are increasingly complex

■ In 1969, the printed code for NASA’s Apollo Guidance Computer was as

high as Margaret Hamilton who wrote it

■ Today:
○ Google Chrome: 76 MLoC
○ Gnome: 9 MLoC
○ Xorg: 1 MLoC
○ glibc: 2 MLoC
○ Linux kernel: 17 MLoC
○ Chrome and OS: ~100 MLoC → 27 lines/page, 0.1mm/page ≈ 370m

→ that’s higher than the Eiffel Tower

34

Patching is hard

A bug is found and we know how to patch it? The

problem will likely remain for a long time

■ incompatibility issues

■ legacy systems, e.g., admin left the company

■ users don’t like changes in functionality

What if you need to replace the whole machine?

What if the system is a pacemaker?

35

“It’s all about the threat model”

A system is only as secure as its weakest
component

Very frequently, the user is the weakest link

36

“It’s all about the threat model”

37

“It’s all about the threat model”

■ Kevin Mitnick, famous hacker in the 80s/90s,

■ First hacker “most wanted” by the FBI until his arrest in 1995

■ Spent five years in prison for wire fraud, possession of unauthorized access devices, interception of

wire or electronic communications, unauthorized access to a federal computer, and causing

damage to a computer

■ He states that he compromised computers solely by using passwords and codes gained by social
engineering, and did not use software programs for exploiting computer or phone security.

■ Now owns a security consulting firm

38

“It’s all about the threat model”

Several incidents using social engineering to bypass 2-factor authentication

■ 2-factor authentication: authenticate somebody using something they

know (usual password) and something they have (e.g., their phone or a

specific hardware device).

■ What if somebody asks to change the phone number on your behalf?

■ What if somebody directly asks you the code?

http://www.businessinsider.fr/us/deray-mckesson-twitter-hacked-social-engineering-2016-6

39

http://www.businessinsider.fr/us/deray-mckesson-twitter-hacked-social-engineering-2016-6

“It’s all about the threat model”

2013: Snowden revelations on the NSA, threat model

changes. Your adversary is now highly funded and

■ has secret court orders to sweep up phone records

■ requests user data from Google, Facebook, Apple…

■ forces companies to install backdoors
■ taps fiber optic cables and promotes weak

cryptographic algorithms to break encryption

■ breaks into the links between datacenters of big

companies (Yahoo, Google)

40

Your threat model is not my threat model

■ People may have threats more immediate than the NSA

■ Many apps that enable spying; sometimes target parents

to keep tab on their children, others directly target

people who want to spy on their partner or ex-partner

■ Stalking is a top warning sign for attempted homicide in

domestic violence cases
■ Not everybody has the same threat model, especially

marginalized groups

41

Usability

■ A more recent domain

■ Basic idea: security experts design applications, but “normal” people use them

■ Easy-to-use human interface
○ easy to apply security mechanisms routinely
○ easy to apply security mechanisms correctly → secure by default, impossible to do things unsecurely
○ interface has to support mental model → do what is expected intuitively

■ Example with authentication: passwords are a user’s nightmare
○ users tend to reuse them → problem in case of one breach
○ users tend to have very simple passwords (“123456”, “password”, …) → too easy to guess
○ policies that enforce frequent changes make things worse → users make them even easier to guess (e.g.

“password1”, then “password2”, etc.)

42

Abstraction layers

■ Abstraction layers = separation of concerns

■ Generalization of a conceptual model, away from any specific

implementation

■ The layer on top does not need to know how the layer below

works, just how to interact with it

■ Great for interoperability → you don’t need to know binary

code to program an app, nor how hardware component work,

nor what does each of the billions of transistors in your

computer

43

Abstraction layers

(In)Security lives and breathes in the cracks between abstraction layers.
@halvarflake

44

■ Original analog network of AT&T used tone dialing, with tones

for internal telephone company use

■ 2600Hz = tone used to signal the phone call is over

■ Playing this frequency “tricks” the company switch into

thinking the call is over → free long-distance calls

■ John Draper discovers that the whistle toy in Cap'n Crunch

cereal boxes plays this exact frequency

Abstraction layers

45

Abstraction layers

Multiple examples that include side-channel attacks and fault attacks, but we’ll see that in Lecture 3

46

How do we improve the situation?

■ Strategies: avoidance, defense and detection

■ Tools
○ detect mistakes and vulnerabilities
○ support programmer
○ formal verification

■ Standards and metrics
○ hold vendors accountable
○ allow for comparison between products

■ Education
○ that’s what we are trying to do here ;-)

47

Projects

48

Projects

Complete list with details: https://cmaurice.fr/teaching/ENS/

May be subject to change

49

https://cmaurice.fr/teaching/ENS/

#1: Adversarial machine learning

Can you trick a computer into

thinking a panda is a gibbon, a

turtle, or a plane?

Yes.

50

#2 802.11 fingerprinting

■ Wi-Fi devices leave a lot of traces

■ These traces can be used to track devices or

people

■ Observe network packets in the wild!

51

#3 Password cracking

■ Passwords are the worst (but they are the best we have)

■ Administrators store them unsecurely, users choose weak ones

and reuse them

■ All of it is a gift for password crackers (you!)

52

#4 Automated bug finding

■ Bugs! They are everywhere and can be dangerous for security

■ Discover methods to automatically find them

■ Gotta catch 'em all (without too much effort)!

53

#5 Reverse-engineering

■ You have a binary, you don’t know what it does

■ Maybe it’s even malicious!

■ Learn reverse-engineering techniques through a series of challenges

54

#6 Crypto in the real world

■ Crypto is the best! It’s maths, so it should be secure

■ But even maths can’t save you if used badly

■ Break all the crypto things (without any key)!

55

#7 Buffer overflows

■ Buffer overflows have been around since mid 90s but the

vulnerability is still quite common today

■ Learn how to exploit all the things!

56

Next lecture:
How to protect data and communications?
System and software security

57

