
ENS Security course 2019
Bomb Lab: Defusing a Binary Bomb

Carnegie Mellon Univ. 15213 staff, adapted by Guillaume DIDIER

Assigned: Fri, Oct. 4
Report Due: Fri, Nov. 29, 11:59PM
Presentation: Fri, Dec. 6
Final Report: Fri, Dec. 13, 11:59PM

1 Introduction

The nefarious Dr. Evil has planted a slew of “binary bombs” on our 64-bit machines. A binary bomb is a
program that consists of a sequence of phases. Each phase expects you to type a particular string on stdin.
If you type the correct string, then the phase is defused and the bomb proceeds to the next phase. Otherwise,
the bomb explodes by printing "BOOM!!!" and then terminating. The bomb is defused when every phase
has been defused.

There are too many bombs for us to deal with, so we are giving you a bomb to defuse. Your mission, which
you have no choice but to accept, is to defuse your bomb before the due date (and as soon as possible).
Good luck, and welcome to the bomb squad!

Step 1: Get Your Bomb

You should have recieved a link to download a VM with the bomb alongside those instructions.

Login to the virtual machine using the provided crdentials and run: tar -xvf bombk.tar. This will
create a directory called ./bombk with the following files:

• README: Identifies the bomb and its owner.

• bomb: The executable binary bomb.

• bomb.c: Source file with the bomb’s main routine and a friendly greeting from Dr. Evil.

Warning: If you let your browser expand your bombk.tar file automatically, you risk resetting the bomb’s
execute bit. Always expand an archive file using the tar command on a Linux Machine.

1



Step 2: Defuse Your Bomb

Your job for this lab is to defuse your bomb.

There are several tamper-proofing devices built into the bomb as well, or so we hear.

You can use many tools to help you defuse your bomb. Please look at the Hints section for some tips and
ideas. The best way is to use your favorite debugger to step through the disassembled binary.

Although phases get progressively harder to defuse, the expertise you gain as you move from phase to phase
should offset this difficulty. However, the last phase will challenge even the best students, so please don’t
wait until the last minute to start.

The bomb ignores blank input lines. If you run your bomb with a command line argument, for example,

linux> ./bomb psol.txt

then it will read the input lines from psol.txt until it reaches EOF (end of file), and then switch over
to stdin. In a moment of weakness, Dr. Evil added this feature so you don’t have to keep retyping the
solutions to phases you have already defused.

To avoid accidentally detonating the bomb, you will need to learn how to single-step through the assembly
code and how to set breakpoints. You can safely exit your bomb at any time by typing ctrl-c (simultane-
ously pressing the ctrl and c keys).

You will also need to learn how to inspect both the registers and the memory states. One of the nice side-
effects of doing the lab is that you will get very good at using a debugger. This is a crucial skill that will pay
big dividends the rest of your career.

Warning: You should never use your debugger to jump directly to a particular phase. Doing so can cause
your bomb to explode silently.

Logistics

This is an group project for the team assigned to the bomb squad. Please see the project instruction on the
course website.

Note: Your defusing strings may not contain the single quote character ’. There is a known bug in the
backend autograder that causes it to get confused by strings with these characters. The bomb program will
reject any such string.

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the
program, and figure out exactly what it does. This is a useful technique, but it not always easy to do. You
can also run it under a debugger, watch what it does step by step, and use this information to defuse it. This
is probably the fastest way of defusing it.

2



However, do not use a script to automatically brute-force solutions to your bomb. You are intelligent stu-
dents, and you can probably figure out how to write a program to try every possible key to find the right
one. But doing so won’t teach you anything about assembly, and we reserve the right to deduct points if we
suspect you of using a script in this manner.

There are many tools which are designed to help you figure out both how programs work, and what is wrong
when they don’t work. Here is a list of some of the tools you may find useful in analyzing your bomb, and
hints on how to use them.

• gdb

The GNU debugger is a command line debugger tool available on virtually every platform. You can
trace through a program line by line, examine memory and registers, look at both the source code and
assembly code (we are not giving you the source code for most of your bomb), set breakpoints, set
memory watch points, and write scripts.

The CS:APP textbook Web page at

http://csapp.cs.cmu.edu/3e/students.html

has a handy 1-page gdb command summary for x86-64 that you can print out and use as a reference.
It also contains a link to Prof. Norm Matloff’s gdb GDB tutorial.

Here are some other tips for using gdb.

– To keep the bomb from blowing up every time you type in a wrong input, you’ll need to learn
how to set breakpoints.

– For online documentation, type “help” at the gdb command prompt, or type “man gdb”,
or “info gdb” at a Unix prompt. Some people also like to run gdb under gdb-mode in
emacs.

– Many of you have asked about what some functions inside of bomblab do, such as sscanf.
For these functions, we suggest that you do not step into these functions, and instead, go onto
the next instruction. You can assume the sscanf works as expected, and you are allowed to
search what generic functions do, such as printf, sscanf, malloc, free, etc. (Typically
you can use the manual page or the C section of cppreference.com) Stepping into sscanf
can be a learning experience, but it’s extremely long and tedious. Your mileage may vary. A
common sign of a library function is that they have @plt at the end of the function call name in
assembly. This is due to library address space randomization, which you may learn by looking
at the relevant lectures of 213 or chapter of the book. You do need to undestrand this to do the
lab.

• objdump -t

This will print out the bomb’s symbol table. The symbol table includes the names of all functions and
global variables in the bomb, the names of all the functions the bomb calls, and their addresses. You
may learn something by looking at the function names! For example, you could discover a function
called “explode bomb”, which would be a good place to set a breakpoint to keep the bomb from
blowing up.

3



• objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual functions.
Reading the assembler code can tell you how the bomb works.

Although objdump -d gives you a lot of information, it doesn’t tell you the whole story. Calls to
system-level functions are displayed in a cryptic form. For example, a call to sscanf might appear
as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1a0>

To determine that the call was to sscanf, you would need to disassemble within gdb.

• strings

This utility will display the printable strings in your bomb.

Looking for a particular tool? How about documentation? Don’t forget, the commands apropos, man,
and info are your friends. In particular, man ascii might come in useful. If you get stumped, feel free
to ask the teaching staff for help.

4


