An Assembly primer

Guillaume DIDIER
L3 ENS - 2010/2021

An Assembly primer

Guillaume DIDIER
L3 ENS - 2010/2021

Assembly / machine code view (ISA)
(user mode)

Assembly / machine code view (ISA)
(user mode)

Assembly / machine code view (ISA)
(user mode)

Assembly / machine code view (ISA)
(user mode)

Addresses

2
p 4
4

Instructions

Addresses

Data

Memory

Assembly / machine code view (ISA)
(user mode)

0.0,

Addresses

Program Counter (PC) I

Instructions

Addresses

Data

Memory

Assembly / machine code view (ISA)
(user mode)

0.0,

h ENEEEEEE
. Condition codes

Program Counter (PC) I
Registers

&
"
[4
p
1
A
|

Addresses

Instructions

Addresses

Data

Memory

How to turn C code into a running process

How to turn C code into a running process

Tong piusfbnj X iohé y"]
' void sumstore(long x, long y
ﬂ Tong *dest

long t plus(x, vy
dest t

How to turn C code into a running process

Compiler
gcc -S

Tong piusfong X iohé y'
' void sumstore(long x, long y
long *dest

long t = plus(x, vy
dest = t

' sumstore:

| pushqg %rbx
mov(q %rdx,
call plus
mov(q %rax,
popq %rbox
ret

How to turn C code into a running process

Compiler
gcc -S

Tong piusfong X iohé y'

' void sumstore(long x, long y
long *dest

long_t plus(x, vy
“m

| sumstore:
" pushg %rbx
%rdx,

How to turn C code into a running process

Compiler ' Assembler

gcc -S as / gcc -c

long plus(long x, long y P 0x0400595:
(0x53
' void sumstore(long x, long y | 0x48
‘ long *dest ‘ 0x89
long t = plus(x, vy 0xd3
dest = t : Oxe8
| Oxf?2
Oxff

L sumstore: ; Oxff
| pushg %rbx 1 Oxff
movq %rdx, %rbx : 0x48
call plus ‘ 0x89
movg %rax, (%rbx) , 0x03
popq DX f 0x5b
| ret ‘ 0xc3

How to turn C code into a running process

Compiler ' Assembler

gcc -S as / gcc -c

long plus(long x, long y P 0x0400595:
(0x53
' void sumstore(long x, long y | 0x48
‘ long *dest ‘ 0x89
long t = plus(x, vy 0xd3
dest = t : Oxe8
| Oxf?2
Oxff

L sumstore: ; Oxff
| pushg %rbx 1 OxEf
movq %rdx, %rbx : 0x48
call plus ‘ 0x89
movg %rax, (%rbx) , 0x03
popq DX f 0x5b
| ret ‘ 0xc3

How to turn C code into a running process

Y 2

P < N
| Compiler " A\sscmbler

gcc -S as / gcc -c

long plus(long x, long y P 0x0400595:
(0x53
' void sumstore(long x, long y | 0x48
‘ long *dest ‘ 0x89
long t = plus(x, vy 0xd3
dest = t : Oxe8
| Oxf?2
Oxff

L sumstore: ; Oxff
| pushg %rbx 1 OxEf
movq %rdx, %rbx : 0x48
call plus ‘ 0x89
movg %rax, (%rbx) , 0x03
popq DX f 0x5b
| ret ‘ 0xc3

How to turn C code into a running process

J |
; program
@ JJ‘ on disk
Assembler

Linker
1d / gcc

Tong piusfong X iong y ~ N0x0400595:

| Compiler Nem—
gcc -S as / gcc -c

0x53

' void sumstore(long x, long y | 0x48
‘ long *dest : 0x89
long t plus(x, vy 0xd3

dest t ; Oxe8

| Oxf2

AR S i R - Oxff
L sumstore: : Oxff
| pushg %rbx 1 OxEf
movq %rdx, %rbx : 0x48
call plus ‘ 0x89
movg %rax, (%rbx) , 0x03
popqg %X f 0x5b

| ret ‘ 0xc3

How to turn C code into a running process
- QQ - ,; Q@ program Q@ process in

b;: >> on disk ‘ r’ memory
: ; Dynamic
Compiler Assembler linker
gcc -S as / gcc -c
~—__ A

long piusfong.x ~ion(_;] y ~ Noxo0400595: .50/ .dll

0x53

' void sumstore(long x, long y | 0x48
ﬂ long *dest : 0x89
long t plus(x, vy 0xd3

dest t ; Oxe8

| Oxf2

Oxff

L sumstore: ; Oxff
| pushg %rbx 1 OxEf
movq %rdx, %rbx : 0x48
call plus ‘ 0x89
movg %rax, (%rbx) , 0x03
popq DX f 0x5b
| ret ‘ 0xc3

How to turn C code into a running process
- Q@ - ,; Q@ program QQ process in

> | >> on disk ‘ memory
: ; Dynamic
Compiler Assembler linker
gcc -S as / gcc -c

—~—__ A

.SO / .dll

long plus(long x, long y § 0x0400595:
i 0x53
' void sumstore(long x, long y | 0x48
ﬂ long *dest : 0x89
long t = plus(x, y 0xd3

dest = t ; 0xe8 .

‘ OxE2 objdump -d

Oxff

L sumstore: ; Oxff
| pushq %rbx ‘ Oxff
movq %rdx, %rbx : 0x48
call plus ‘ 0x89
movg %rax, (%rbx) , 0x03
popq DX f 0x5b
ret ‘ 0xc3

0000000000400595 <sumstore>:
400595: 53 push Srbx
400596: 48 89 d3 mov Srdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059e: 48 89 03 mowv srax, (srbx)
4005al: b5b pop Srbx
4005a2: c3 retqg

How to turn C code into a running process
- Q@ - ,; Q@ program QQ process in

> | >> on disk ‘ memory
: ; Dynamic
Compiler Assembler linker
gcc -S as / gcc -c

—~—__ A

.SO / .dll

long plus(long x, long y § 0x0400595:
i 0x53
' void sumstore(long x, long y | 0x48
long *dest : 0x89
long t plus(x, vy 0xd3

dest = t ; 0xe8 .

: 0xf2 objdump -d gdb

Oxff

L sumstore: ; Oxff
| pushq %rbx ‘ Oxff -
movq %rdx, %rbx : 0x48
call plus ‘ 0x89
movg %rax, (%rbx) , 0x03
popq DX f 0x5b
ret ‘ 0xc3

0000000000400595 <sumstore>:
400595: 53 push Srbx
400596: 48 89 d3 mov Srdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059e: 48 89 03 mowv srax, (srbx)
4005al: b5b pop Srbx
4005a2: c3 retqg

Why we care ?

Why we care ?

e Same productivity in line of code per day in C and asm,
you get more done by writing C.

Why we care ?

e Same productivity in line of code per day in C and asm,
you get more done by writing C.

e System programmers write little asm but read it a lot.

Why we care ?

e Same productivity in line of code per day in C and asm,
you get more done by writing C.

e System programmers write little asm but read it a lot.

* Even more for security researchers.

Why we care ?

Same productivity in line of code per day in C and asm,
you get more done by writing C.

System programmers write little asm but read it a lot.
Even more for security researchers.

Also useful to understand code performance.

Why we care ?

Same productivity in line of code per day in C and asm,
you get more done by writing C.

System programmers write little asm but read it a lot.
Even more for security researchers.
Also useful to understand code performance.

You may need it for your work!

X86 has a long history

X86 has a long history

e First non Intel CPUs before 1970.

X86 has a long history

e First non Intel CPUs before 1970.

e 1978 : birth of x86, Intel 8086 is a 16-bit micro processor

x86 has a long history

e First non Intel CPUs before 1970.
e 1978 : birth of x86, Intel 8086 is a 16-bit micro processor

e 1985 : extension to 32-bit

X86 has a long history

First non Intel CPUs before 1970.
1978 : birth of x86, Intel 8086 is a 16-bit micro processor
1985 : extension to 32-bit

2003 (AMD)-2004 (Intel) : 64-bit extension.

X86 has a long history

e First non Intel CPUs before 1970.

e 1978 : birth of x86, Intel 8086 is a 16-bit micro processor
e 1985 : extension to 32-bit

e 2003 (AMD)-2004 (Intel) : 64-bit extension.

® A ot of crufts left-over of x86 long and convoluted history.

X86 has a long history

Registers

Registers

e 16 registers, each 64 bits (8 bytes).

X 31 15 7 0 63 31 15 7 0

R N e R o =
R = wna I

Registers

e 16 registers, each 64 bits (8 bytes).
e What the CPU mostly operates on.

X 31 15 7 0 63 31 15 7 0

R N e R o =
R = wna I

Registers

e 16 registers, each 64 bits (8 bytes).
e What the CPU mostly operates on.

e Suffixes on instructions used to make the size of operands explicit (can be omitted in some cases):
q, |, w, b, for resp. 8, 4, 2 and 1 bytes values

X 31 15 7 0 63 31 15 7 0

N = v N 2 =

Assembler syntax

Assembler syntax

 Anatomy of an assembler instruction

Assembler syntax

 Anatomy of an assembler instruction

e Additionally labels can be inserted to point at specific points

Assembler syntax

 Anatomy of an assembler instruction

e Additionally labels can be inserted to point at specific points

e For x86 asm, two syntax exist, and have the operands in opposite orders:

syntax AT&T Intel

Assembler syntax

 Anatomy of an assembler instruction
e Additionally labels can be inserted to point at specific points

e For x86 asm, two syntax exist, and have the operands in opposite orders:

syntax AT&T Intel
used by unix, gcc, linux, macOS etc the microsoft world

Assembler syntax

 Anatomy of an assembler instruction
e Additionally labels can be inserted to point at specific points

e For x86 asm, two syntax exist, and have the operands in opposite orders:

syntax AT&T Intel
used by unix, gcc, linux, macOS etc the microsoft world

operand order | destination operand is last destination operand comes first

 Anatomy of an assembler instruction

Assembler syntax

e Additionally labels can be inserted to point at specific points

e For x86 asm, two syntax exist, and have the operands in opposite orders:

syntax
used by
operand order

example

AT&T
unix, gcc, linux, macOS etc

destination operand is last
Ox8¢(,

,4)

Intel
the microsoft world

destination operand comes first
dword ptr [+ *4h+8h]

 Anatomy of an assembler instruction

mnemonic

Assembler syntax

e Additionally labels can be inserted to point at specific points

lTabel:

Tnstruction

e For x86 asm, two syntax exist, and have the operands in opposite orders:

syntax

used by
operand order
example

other
differences

AT&T
unix, gcc, linux, macOS etc
destination operand is last
mov 1 , Ox8(,

size suffix, immediate with $,
addressing mode with D(,,),
register with %, Ox for hex

,4)

Intel
the microsoft world
destination operand comes first
mov dword ptr [- *4h+8h],

no size suffix, addressing with [], s1ze ptr
size specification when needed, no % or $,
h suffix for hex

 Anatomy of an assembler instruction

mnemonic

Assembler syntax

e Additionally labels can be inserted to point at specific points

lTabel:

Tnstruction

e For x86 asm, two syntax exist, and have the operands in opposite orders:

syntax

used by
operand order
example

other
differences

AT&T
unix, gcc, linux, macOS etc
destination operand is last
mov 1 , Ox8(,

size suffix, immediate with $,
addressing mode with D(,,),
register with %, Ox for hex

,4)

Intel
the microsoft world
destination operand comes first
mov dword ptr [- *4h+8h],

no size suffix, addressing with [], s1ze ptr
size specification when needed, no % or $,
h suffix for hex

Moving data around

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above

e Example:

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:

. is special

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special

e Some instructions have special cases

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special

e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special
e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special
e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

e Same as in C but prefixed with $

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special

e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

e Same as in C but prefixed with $

e Source operand only

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special
e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

e Same as in C but prefixed with $

e Source operand only

e Memory (at most one of the two)

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special
e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

e Same as in C but prefixed with $

e Source operand only

e Memory (at most one of the two)

e As many bytes as needed starting at an address in register

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example:
. is special

e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

e Same as in C but prefixed with $

e Source operand only

e Memory (at most one of the two)
e As many bytes as needed starting at an address in register

e Simple example ()

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example: :
. is special

e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

[]
))

e Same as in C but prefixed with $

e Source operand only

e Memory (at most one of the two)
e As many bytes as needed starting at an address in register
e Simple example ()

e Other addressing mode exist (see later)

Moving data around

e To move a « quad word » (8 bytes) of data:

e QOperand types:

e Register: One the 16 quad word registers above
e Example: :
. is special

e Some instructions have special cases

e Immediate: an integer constant of 1,2 or 4 bytes

[]
))

e Same as in C but prefixed with $

e Source operand only

e Memory (at most one of the two)
e As many bytes as needed starting at an address in register
e Simple example ()

e Other addressing mode exist (see later)

Example

Example

aaaaaaa

Example

Source Dest Example C analog

Reg =
Imm '

Example

Source Dest Example C analog

Reg =
Imm '

Mem ¢) % -

Source

Imm

Reg

"

Example

Dest

Reg
Mem

r Reg

Example

C analog

Source

Imm

Reg

"

Example

Dest

Reg
Mem

r Reg

Mem

Example

C analog

Example

Source Dest Example C analog
Reg =
Imm \
Mem ¢) % -
r Reg =
Reg |
Mem ¢) *n =

Mem Reg () = ¥

Example

Source Dest Example C analog

Reg mov(q ; =
Imm \

Mem movq ’ () * —

[Re movq : =
mov(Reg g

Mem movq , () *p =

Mem Reg movq (), = *p:

'V01d.$wapd1dng pr‘ TCngdyb
l long t0 Xp
long tl yp

Xp tl
yp t0

Source

Imm

movq Reg

Mem

'Voidléwapﬁ1dnngp'
long tO0 Xp
long tl yp

Xp tl
yp = t0

Example

Dest

Reg

Mem
Reg
Mem

Reg

Example

mov(q

mov(q

movq

mov(q

mov(q

$42,

$2020, ()

C analog

= 42;

(%rdi1), %rax
(%rsi), %rdx

%rdx,
Brax,

(%rdi)
(%rsi)

Addressing modes

Addressing modes

e Most general form:

D(Rb,R1,S) : Refers to addr = Reg[Rb] + Reg[Ri]*S + D
e D: Constant displacement encoded on 1,2 or 4 bytes

. : Base register: Any of the 16 integer registers

. : Index register: Any except %rsp

e S: scale: Oneof 1,2,4 or 8 (1 by default if omitted)

10

Addressing modes

e Most general form:
D(Rb,R1,S) : Refers to addr = Reg[Rb] + Reg[Ri]*S + D

e D: Constant displacement encoded on 1,2 or 4 bytes
. : Base register: Any of the 16 integer registers
. : Index register: Any except %rsp

e S: scale: Oneof 1,2,4 or 8 (1 by default if omitted)

* Any element can be omitted.
e 0x48000 -only D
e 0Ox42(, ,2) -Ri,Sand D

* (,) -RbandRi(S=1)

Arithmetic operations

Arithmetic operations

Instruction

Computation

Dest = Dest + Src

Dest = Dest - Src

Dest = Dest * Src

Dest = Dest << Src Also known as

Dest = Dest >> Src Arithmetic right shift

Dest = Dest >> Src Logical right shift

Dest = Dest N Src

Dest = Dest & Src

Dest = Dest | Src

Dest = Dest + 1

Dest = Dest - 1
Dest = — Dest Two complement
Dest = ~Dest Bitwise negation

This is not an exhaustive list.

11

Jumping

Jumping

e Redirect the control flow elsewhere than the next instruction:
e Define a label to jump to (before an instruction),
. will redirect execution to the label.

e The assembler and linker will encode the correct numbers in the instruction for you.

12

Jumping

e Redirect the control flow elsewhere than the next instruction:
e Define a label to jump to (before an instruction),
. will redirect execution to the label.

e The assembler and linker will encode the correct numbers in the instruction for you.

* Also possible to jump to a address in a register:

12

Jumping

* Redirect the control flow elsewhere than the next instruction:
e Define a label to jump to (labe | : before an instruction),
e Jmpq label will redirect execution to the label.

e The assembler and linker will encode the correct numbers in the instruction for you.

* Also possible to jump to a address in a register:
jmpq *

‘Void100p~1dng é
‘ a a a
while(1l

d

12

Jumping

e Redirect the control flow elsewhere than the next instruction:
e Define a label to jump to (labe | : before an instruction),
e Jmpq label will redirect execution to the label.

e The assembler and linker will encode the correct numbers in the instruction for you.

* Also possible to jump to a address in a register:
Jjmpq *

‘Void100p~1dng é
‘ a a a
while(1l

%rdi, %rdi
a

$1, %rdi
while

12

Condition codes

Condition codes

* Flags set depending on the result of the

last arithmetic instruction.

sets flags depending on t = a +

13

Condition codes

* Flags set depending on the result of the
last arithmetic instruction.

. sets flags depending on t = a +

e 2 Instruction set conditions, discard
result:

. sets flags dependingont =2 &
(think of it as)

. sets flags dependingon t = b -
(think of it as a)

13

Condition codes

* Flags set depending on the result of the
last arithmetic instruction.

. sets flags depending on t = a +

e 2 Instruction set conditions, discard
result:

. sets flags dependingont =2 &
(think of it as)

. sets flags dependingon t = b -
(think of it as a)

* Used by the (, —
(Conditionally set a byte (8 bit) to 0 or 1),

13

Condition codes

Flags set depending on the result of the
last arithmetic instruction.

. sets flags depending on t = a +

2 instruction set conditions, discard
result:

. sets flags dependingont =2 &
(think of it as)

. sets flags dependingon t = b -
(think of it as a)

Used by the (,) oen)
(Conditionally set a byte (8 bit) to 0 or 1),

Mostly used by conditional jump
instructions (see next slide).

13

Condition codes

* Flags set depending on the result of the g3 Name When is it set
last arithmetic instruction.

Arithmetic operation generates a carry
or a borrow out of the MS bit

CF Carry flag
. sets flags depending on t = a +

LS byte of the result contains an even

PF Parity flag number of 1 bits

e 2 Iinstruction set conditions, discard two's-complement overflow

- OF Overflowflag (2 > 0 & b > 0 & © < 0) ||
result: J G208 b <08t o= 0)

) (think of it aSSGtS fl)ags depending on { = 2 & SF Sign flag < 0 (as two complement signed)
, ZF Zero flag ==
. sets flags dependingon t = b -
(think of it as a)
* Used by the (, —_—

(Conditionally set a byte (8 bit) to 0 or 1),

* Mostly used by conditional jump
instructions (see next slide).

13

Condition codes

Flags set depending on the result of the gag Name

last arithmetic instruction.

e addg a, b sets flags depending on

2 instruction set conditions, discard

result:

e testg a,b sets flags depending on
(think of it as andq)

e Cmpqg a, sets flags depending on
(think of it as a subq)

Used by the setXxXX (sete, setge, ...)
(Conditionally set a byte (8 bit) to 0 or 1),

Mostly used by conditional jump

instructions (see next slide).

CF

PF

OF

SF

ZF

Carry flag

Parity flag

Overflow flag

Sign flag

Zero flag

example:

mov(q
movq

cmpq
setge

When is it set

Arithmetic operation generates a carry
or a borrow out of the MS bit

LS byte of the result contains an even
number of 1 bits

two’s-complement overflow
(a>08&& b > 0 &&
(a2 <0&& b < 0 &&

< 0) ||
)

< 0 (as two complement signed)

==O

$42, %rax
$12, %rdx
%rdx,%rax
%a |

Condition codes

Flags set depending on the result of the gag Name

last arithmetic instruction.

e addg a, b sets flags depending on

2 instruction set conditions, discard

result:

e testg a,b sets flags depending on
(think of it as andq)

e Cmpqg a, sets flags depending on
(think of it as a subq)

Used by the setXxXX (sete, setge, ...)
(Conditionally set a byte (8 bit) to 0 or 1),

Mostly used by conditional jump

instructions (see next slide).

CF

PF

OF

SF

ZF

Carry flag

Parity flag

Overflow flag

Sign flag

Zero flag

example:

mov(q
movq

cmpq
setge

When is it set

Arithmetic operation generates a carry
or a borrow out of the MS bit

LS byte of the result contains an even
number of 1 bits

two’s-complement overflow
(a>08&& b > 0 &&
(a2 <0&& b < 0 &&

< 0) ||
)

< 0 (as two complement signed)

==O

$42, %rax
$12, %rdx
%rdx,%rax
%a |

Branches
(conditional

14

Instruction

~NON N N

Branches

(conditional

Condition Flags

overflow OF =1

not overflow OF =0

below / not above or equal CF =1

not below / above or equal CF=0

equal / zero ZF =1

not equal / zero VASEN0
below or equal / not above (CFOR ZF) = 1
neither below nor equal / (CF OR ZF)= 0

above

sign SF =1

no sign SF=0

parity even PF =1

parity odd PF=0

less / not greater or equal
not less / greater or equal
less or equal / not greater

not less or equal / greater

(SF XOR CF) = 1
(SF XOR CF) = 0
((SF XOR OF) OR ZF) = 1

((SF XOR OF) OR ZF) = 0
14

Instruction

~NON N N

Branches

(conditional
Condition Flags
overflow OF =1
not overflow OF =0

below / not above or equal
not below / above or equal
equal / zero

not equal / zero
below or equal / not above
neither below nor equal /
above
sign
no sign
parity even
parity odd
less / not greater or equal
not less / greater or equal
less or equal / not greater

not less or equal / greater

CF =1
CF=0
ZF =1
ZF =0

(CF OR ZF) = 1

(CF OR ZF)=0

SF = 1
SF=0
PF = 1
PF =0
(SF XOR CF) = 1
(SF XOR CF) = 0
(SF XOR OF) OR ZF) = 1

((SF XOR OF) OR ZF) = 0
14

Below / Above refers to unsigned
Less / Greater to 2 complement signed

Instruction

jo
jno
jb / jnae
jnb / jae
je / Jz
jne / jnz
jbe / jna
jnbe / ja
]S
jns
jp / Jpe
jnp / jpo
j1 / jnge
jn1 / Jjge
jle / jng
jnle / Jg

Branches

(conditional Jmp label)

Condition Flags
overflow OF = 1

not overflow OF=0

below / not above or equal CF =1
not below / above or equal CF=0
equal / zero ZF =1

not equal / zero VASEN0

below or equal / not above (CFOR ZF) = 1

neither below nor equal /

above (CFOR ZF)=0
sign SF =1
no sign SF=0
parity even PF =1
parity odd PF=0
less / not greater or equal (SF XOR CF) =1
not less / greater or equal (SF XORCF) =0

less or equal / not greater ((SF XOR OF) OR ZF) =1

not less or equal / greater ((SF XOR OF) OR ZF) =0
14

Below / Above refers to unsigned
Less / Greater to 2 complement signed

example:
movq $0, %Irax
testq %rdi, %rdi

jz end
| movg $42, %rax
L end:

If else, switch case

switch case

,Tdng.dbsdiffi1ondxi Tdng yd '
- long result ,
1t (X y

X y

else
result =y - X
return result

15

~ if else, switch case

X y
else
result =y - x

return result

15

If else, switch case

,Tongvébsdiff‘1ondx‘ TOng y‘ t absdiff:
. long result / . |
if (x >y

cmpqg %rsi

jle .L4
movq %rdi
subqg %rsi
ret

X y
else
result =y - X
return result

ﬁovq %rs
subg %rdi
ret

15

If else, switch

,Tdng.dbsdiffi1onjxi Tdng yd ‘ b absdiff:
. long result > . ‘
if (x >y

cmpq %rsi

jle .L4
movq %rdi
subqg %rsi
ret

X y
else
result =y - X
return result

ﬁovq %rs
subg %rdi
ret

 long switch_eg(long x, long y, long z
long w
switch(x
case 1

w

break
case 2

W y
case 3

w Z

break
case 5
case 6

w Z

break
default

w 2

return w

If else, switch

,Tdng.dbsdiffi1onjxi Tdng yd ‘ ?absdiff:o :
. long result | . ‘ cmpq %rsi
1t (X y

jle .L4
movq %rdi
subqg %rsi
ret

X y
else
result =y - X
return result

ﬁovq %rs
subg %rdi
ret

 long switch_eg(long x, long y, long z
long w
switch(x
case 1

w

break
case 2

W y
case 3

w Z

break
case 5
case 6

w Z

break

| xin%rdi |
y in %rsi
default | zin%rdx

w = 2 resultin%rax |

return w

If else, switch case
 Tong absdiff(long x, long y ;absdiff:o :
- long result I CMpg %rs
1f (X y | *

X~y R B jle .L4
i L] ; o =
else | . movq %rdi
result =y - x J% i L subq %rs
return result] ret

movq %rsi
 long switch_eg(long x, long y, long z | ; ?g?q %rdi
- long w : - e
switch(x (S
case 1 | switch_eg:
w y . movqg %rdx, %rcx
break \ i cmpq $6, %rdi # x:6
case 2 E ja 'FS :
w =Y | t Jmp *.L4(,%rd1,8)
case 3 y : > e
W Z | i .L1: # 1n 1n 3,5,7,8,9
break « 2
case 5

case 6 b oxin%rdi | .section .rodata .align 8

W v4) . .L4:
break y In7%rs1 .quad .L8

default Z"W%de ? i f .quad .L3
w = 2 resultin%rax| | .quad .L5
S i .quad .L9
return w ; ' .quad .L8
: ¢ .quad .L7 1
| _.quad .L7 > O]

Loops

Loops

- long pcount_while(unsigned long x
long result = 0
while (x
result x & Ox1
X 1

return result

16

Loops

- long pcount_while(unsigned long x
long result = 0
while (x
result x & Ox1
X 1

return result

F long pcount_goto_jtm(unsigned long X ;
¢t long result = 0
goto test
loop
E result X & Ox1
X 1

“te§t
if (x

goto loop
return result

16

- long pcount_while(unsigned long x
long result = 0
while (x
result x & Ox1
X 1

| 1ohg pcount;gbto_dw unsigﬁed 1dng X
return result | | }gng result = 0

X
goto done
F long pcount_goto_jtm(unsigned long X ; . result X
¢t long result = 0 ¥ X 1
goto test , F 1f (x

loop j goto loop
E result X Ox1 ‘ ¢ done
X 1) E return result
F test
if (x

goto loop
return result

16

- long pcount_while(unsigned long x
long result = 0
while (x
result x & Ox1
X 1

| ’1ohg pcount;gbto_dw unéigﬁed 1dng X
return result | | }2”9 result = 0

X
| goto done
F long pcount_goto_jtm(unsigned long X ; . result X
¢t long result = 0 ¥ X 1
goto test , ¥ 1f (X
loop ; goto loop
E result X Ox1 | ¢ done
X 1) I return result
St ‘
if (x

goto loop
return result

E te

b pcount_goto_jtm:

F movl $0, %eax f

. jmp

. . L3¢ |

i mov(q 1, %rdx §
andl %edx 4
addq %rax i

¢ shrq ' |

L2

L testq %rdi, %rdi

jne .L3

rep ret

- long pcount_while unsigned 1oﬁg X

long result = 0
while (x
result X Ox1
X 1

return result

 1ohg péount;gofo_jtm(uﬁsighed Tong.x

long result = 0
goto test
t 1o0p
| result X Ox1
X 1
ST
if (x

goto loop
return result

E te

b pcount_goto_jtm:

movl $0,

. jmp

. . L3:

i movq
andl
addq

¢ shrq

L L2

¢t testq %rdi,

jne .L3

rep ret

%eax

%rdx |
%edx 4
%rax i

%rdi

'1009

’1ohg péount;gbfo_dw unéigﬁed 1dng X

long result = 0
if (Ix
goto done

result X

X 1

if (x
goto loop

return result

¢ done

i pcount_goto_dw:
testqg %rdi, %rdi |
je .L4 ,

E movl $0, %eax |

.L3:]

. movq %rdi, %rdx
andl $1, %edx |
addg %rdx, %rax
shrq %rdi '
jne .L3

. rep ret

. L4

¢t movl $0,
ret

an often abused instruction:

an often abused instruction:

e | oad effective address: Src

e Srcis an address mode expression

. IS a register, to be set to the address denoted by expression

17

an often abused instruction:

e | oad effective address: Src

e Srcis an address mode expression

. IS a register, to be set to the address denoted by expression

e Used to compute address (instead of accessing them),

e e.gtranslatingp = &x[1];

17

an often abused instruction:

e | oad effective address: Src

e Srcis an address mode expression

. IS a register, to be set to the address denoted by expression

e Used to compute address (instead of accessing them),

e e.gtranslatingp = &x[1];

e Does not set condition codes,

17

an often abused instruction:

Load effective address: Src

e Srcis an address mode expression

. IS a register, to be set to the address denoted by expression

Used to compute address (instead of accessing them),

e e.gtranslatingp = &x[1];
Does not set condition codes,

Can be used to compute expressions of the form x + k*y for k in {1,2,4,8}

17

an often abused instruction:
leag

e |oad effective address: leaq Src,

e Srcis an address mode expression

. IS a register, to be set to the address denoted by expression

e Used to compute address (instead of accessing them),

e e.gtranslating p = &x[1];
e Does not set condition codes,

e Can be used to compute expressions of the form x + k*y for k in {1,2,4,8}

iTongvm12 1ohg x"'

return x 12

17

an often abused instruction:
leaq

e |oad effective address: leaq Src,

e Srcis an address mode expression

. IS a register, to be set to the address denoted by expression

e Used to compute address (instead of accessing them),

e e.gtranslatingp = &x<[1];
e Does not set condition codes,

e Can be used to compute expressions of the form x + k*y for k in {1,2,4,8}

iTongm12 1ong x) Bmni2:

| 1eaq (%rdi,%rdi1,2), %rax
return x*12 || salg $2, %rax
‘ ret

17

The stack

The stack

o Is special. It points to a location in
memory called the stack.

18

The stack

o Is special. It points to a location in
memory called the stack.

e A stack is a LIFO structure. The x86 stack
Is implemented using to instructions :
and

18

The stack

e %rsp is special. It points to a location in
memory called the stack.

* A stack is a LIFO structure. The x86 stack
iIs implemented using to instructions :
pushg and popg

18

The stack

o Is special. It points to a location in
memory called the stack.

* A stack is a LIFO structure. The x86 stack
Is implemented using to instructions
pushg and popg

* The x86 stack grows down

" ! ' v y

EN NI 22 'y
. : A ACGRWE
- *.. - = -
Ll Ty \ . At < . Lt
o Tl A / i)) A S "\:
s e : & \"h‘.: A Ji7 2 AL el oSS VR
(] e st i "t S AR TP SR N o
s \ N SN O (y 2) e B2\
0 7 4 .)l)’ \
Yook i e A \
’ . [9 . $
- 7% %7 ~ 3
N H
oL oz J - \ u .

N ’m‘nhmhul_'

18

Bottom
OXFFFFFFFFFFFFFFFFE

Top 0x0

The stack

Is special. It points to a location in
memory called the stack.

A stack is a LIFO structure. The x86 stack
iIs implemented using to instructions :
pushg and popg

The x86 stack grows down

pushq
1. -=8
2. write the at ()

18

%rsp Bottom
OxFFFFFFFFFFFFFFFF

=

Top 0x0

The stack

(o)
is special. It points to a location in %rsp mgp Slejidelsy
memory called the stack. OxFFFFFFFFFFFFFFFF

A stack is a LIFO structure. The x86 stack

is implemented using to instructions : _
pushg and popg

The x86 stack grows down :
pushq

1. -=8

2. write the at ()
POopPq

1. read value from () to

2. += 8.

Top 0x0
18

The stack

%rsp is special. It points to a location in
memory called the stack.

A stack is a LIFO structure. The x86 stack |

iIs implemented using to instructions :
pushg and popg

The x86 stack grows down

pushqg src:
1. %rsp-=8

2. write the src at (%rsp)

popq dest
1. read value from (%rsp) to dest

2. %rsp+=8.

| %ri

%rsp = Bottom
OxFFFFFFFFFFFFFFFF
pushg $2020

pushg $3

—
-

popq %rd
addq $8, %rsp
popq %rsi

Top 0x0

18

The stack

(o) . (o)
%rsp is special. It points to a location i e Arsp mpp Bottom
memory called the stack. L example: OXFFFFFFFFFFFFFFEE

A stack is a LIFO structure. The x86 stack |
iIs implemented using to instructions :
pushg and popg

The x86 stack grows down

pushqg src:

1. %rsp-=8
2. write the src at (%rsp)
popq dest

1. read value from (%rsp) to dest

2. %rsp+=8.

Top 0x0

18

The stack

(o) . (o)
%rsp is special. It points to a location i e Arsp mpp Bottom
memory called the stack. L example: OXFFFFFFFFFFFFFFEE

A stack is a LIFO structure. The x86 stack |
iIs implemented using to instructions :
pushg and popq

The x86 stack grows down

pushqg src:
1. %rsp-=8

2. write the src at (%rsp)

popq dest
1. read value from (%rsp) to dest

2. %rsp+=8.

Top 0x0

18

The stack

(o) . (o)
%rsp is special. It points to a location i e Arsp mpp Bottom
memory called the stack. L example: OXFFFFFFFFFFFFFFEE

A stack is a LIFO structure. The x86 stack |
iIs implemented using to instructions :
pushg and popq

The x86 stack grows down

pushqg src:
1. %rsp-=8

2. write the src at (%rsp)

popq dest
1. read value from (%rsp) to dest

2. %rsp+=8.

Top 0x0

18

The stack

(o) . (o)
%rsp is special. It points to a location i e Arsp mpp Bottom
memory called the stack. L example: OXFFFFFFFFFFFFFFEE

A stack is a LIFO structure. The x86 stack |
iIs implemented using to instructions :
pushg and popq

The x86 stack grows down

pushqg src:
1. %rsp-=8

2. write the src at (%rsp)

popq dest
1. read value from (%rsp) to dest %rdi = 3
2. %rsp+=8.

Top 0x0
18

The stack

(o) . (o)
%rsp is special. It points to a location i e Arsp mpp Bottom
memory called the stack. L example: OXFFFFFFFFFFFFFFEE

A stack is a LIFO structure. The x86 stack |
iIs implemented using to instructions :
pushg and popg

The x86 stack grows down

pushqg src:

1. %rsp-=8

2. write the src at (%rsp)

popq dest
1. read value from (%rsp) to dest %rdi = 3
2. %rsp+=8.

Top 0x0
18

The stack

(o) . (o)
%rsp is special. It points to a location i e Arsp mpp Bottom
memory called the stack. L example: OXFFFFFFFFFFFFFFEE

A stack is a LIFO structure. The x86 stack |
iIs implemented using to instructions :
pushg and popg

The x86 stack grows down

pushqg src:
1. %rsp-=8 %rsi = 42
2. write the src at (%rsp)

popq dest
1. read value from (%rsp) to dest %rdi = 3
2. %rsp+=8.

Top 0x0
18

The stack

0) . (0)
e %rsp is special. It points to a 10cation IN e %rsp wp Bottom
memory called the stack. L example: OXFFFFFFFFFFFFFFEFE

e A stackis a LIFO structure. The x86 stack ! pushg $2020
Is implemented using to instructions : SEEHISAERE! _
pushq and popg E popq %rdi

-

addq $8, %rsp
popq %rsi

* The x86 stack grows down

e pushqg src:
1. %rsp-=8

%rsi = 42
2. write the src at (%rsp)
e popg dest
1. read value from (%rsp) to dest %rdi = 3
2. %rsp+=8.

e You can also
e drop avalue with addqg $8, %rsp,

e make room for values using subg, and access
them with D(%rsp).

Top 0x0
18

Building functions

Building functions

e Problem:
e Jump to function code

e Go back where you came from ?

19

Building functions

e Problem:
e Jump to function code
e Go back where you came from ?

e Solution: Use the stack !

19

Building functions

* Problem:

e Jump to function code

e Go back where you came from ?
e Solution: Use the stack !

e A iInstruction
1. push the return address

2. jump to the function code

19

Building functions

Problem:

e Jump to function code

e Go back where you came from ?
Solution: Use the stack !

A iInstruction
1. push the return address

2. jump to the function code

The instruction is used at the end of the
function

1. pop the return address
2. jump back to it.
3. (That can be though of as)

19

Building functions

Problem:

e Jump to function code

e Go back where you came from ?
Solution: Use the stack !

A iInstruction
1. push the return address

2. jump to the function code

The instruction is used at the end of the
function

1. pop the return address
2. jump back to it.
3. (That can be though of as)

Functions can modify to use the stack but
have to restore it to the correct value before

19

Building functions

Problem:

e Jump to function code

e Go back where you came from ?
Solution: Use the stack !

A iInstruction
1. push the return address

2. jump to the function code

The instruction is used at the end of the
function

1. pop the return address
2. jump back to it.
3. (That can be though of as)

Functions can modify to use the stack but
have to restore it to the correct value before

Make sure you balance the and
with the and to

19

Building functions

Problem: | exém Té: _
| i pushqg $42
* Jump to function code . subg $0x8, %rsp

callg miam

e Go back where you came from ?

addg $0x16, %rsp i
ret '

A cal | g instruction miam:
¢ pushg $789

addqg $8, %rsp
2. jump to the function code f ret

Solution: Use the stack !

1. push the return address

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq)

Functions can modify to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addqg $8 to

19

Building functions

%rsp mpp

Problem: exampe:
| E pushg $42
* Jump to function code E subg $0x8, %rsp _

callg miam

e Go back where you came from ? | | _}
L addq $0x16, %rsp §

Solution: Use the stack !
ret

A cal | g instruction miam:
¢ pushg $789

addq $8, %rsp
2. jump to the function code f ret

1. push the return address

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq)

Functions can modify to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addqg $8 to

19

Building functions

%rsp mpp

Problem: exampe:
| E pushg $42
* Jump to function code . subg $0x8, %rsp

Tg miam

e Go back where you came from ? | "
E addq $0x16, %rsp i

Solution: Use the stack !

g ret) 27
A callq instruction miam: _
¢ pushq $789
1. push the return address addq $8, %rsp
2. jump to the function code f ret

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq)

Functions can modify to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addqg $8 to

19

Building functions

%rip %rsp ==

Problem: example:
| E pushg $42
* Jump to function code . subg $0x8, %rsp

e Go back where you came from ? callg miam

addq $0x16, %rsp i}
; ret ;
A cal lq instruction miam: :
¢ pushg $789
addqg $8, %rsp
2. jump to the function code f ret

Solution: Use the stack !

1. push the return address

Bl <example+0xb>

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq %rip)

Functions can modify 7%rsp to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addg $8 to %rsp

19

Building functions

%rip %rsp ==

Problem: e‘xémpTe- :
_ i pushq $42
e Jump to function code b cubg $0x8, %rsp _
e Go back where you came from ? callg miam
Solution: Use the stack ! addg $0x16, %rsp
A ca’llq instruction miam:
1. push the return address Brrrraom e <example+0xb>

-

2. jump to the function code f ret

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq %rip)

Functions can modify 7%rsp to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addg $8 to %rsp

19

Building functions

%rip %rsp ==

Problem: example:
| E pushg $42
* Jump to function code . subg $0x8, %rsp

e Go back where you came from ? callg miam

addq $0x16, %rsp i}
i ret *
A cal | g instruction miam:

¢ pushq $789
addg $8, %rsp
2. jump to the function code E “ret

Solution: Use the stack !

1. push the return address

B <example+0xb>

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq %rip)

Functions can modify 7%rsp to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addg $8 to %rsp

19

Building functions

%rsp mpp

Problem: exampe:
| E pushg $42
* Jump to function code . subg $0x8, %rsp

callg miam

e Go back where you came from ? | "
E addq $0x16, %rsp i

Solution: Use the stack !
»

‘ ret
A cal | g instruction miam:
¢ pushg $789
addqg $8, %rsp
2. jump to the function code f ret

??

1. push the return address

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq)

Functions can modify to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addqg $8 to

19

Building functions

Problem: example:
| E pushg $42
* Jump to function code . subg $0x8, %rsp

callg miam

e Go back where you came from ?
addq $0x16, %rsp f
ret '

A cal | g instruction miam:
¢ pushg $789

addqg $8, %rsp
2. jump to the function code f ret

Solution: Use the stack !

1. push the return address

The retq instruction is used at the end of the Noté1:This commentis
function 11 (Oxb) machine code

bytes in example
1. pop the return address

2. jump back to it.
3. (That can be though of as popq)

Functions can modify to use the stack but
have to restore it to the correct value before ret

Make sure you balance the pushg and subqg
%8 with the popg and addqg $8 to

19

Calling functions

Calling functions

e How do we make sure we can keep our register values when we call functions ?
How can we pass a function parameters and get a return value ?

20

Calling functions

e How do we make sure we can keep our register values when we call functions ?
How can we pass a function parameters and get a return value ?

e [nen [

N e

e [rec IR

R

e [res (RN

R

e

S o

Calling functions

e How do we make sure we can keep our register values when we call functions ?
How can we pass a function parameters and get a return value ?

e We use a convention (ABI) that defines how to use registers. (We present the linux x86_64 one)

oth arg

S i =3

Calling functions

e How do we make sure we can keep our register values when we call functions ?
How can we pass a function parameters and get a return value ?

e We use a convention (ABI) that defines how to use registers. (We present the linux x86_64 one)
e Caller saved register must be saved on the stack before calling functions if needed.

oth arg

S i =3

Calling functions

How do we make sure we can keep our register values when we call functions ?
How can we pass a function parameters and get a return value ?

e We use a convention (ABI) that defines how to use registers. (We present the linux x86_64 one)

Caller saved register must be saved on the stack before calling functions if needed.

Callee saved must be saved by the function that wants to use it.

oth arg

S i =3

Calling functions

e How do we make sure we can keep our register values when we call functions ?
How can we pass a function parameters and get a return value ?

e \We use a convention (ABI) that defines how to use registers. (We present the linux x86_64 one)
e Caller saved register must be saved on the stack before calling functions if needed.

e Callee saved must be saved by the function that wants to use it.

e Too many arguments ? Use the stack !

oth arg

An example

An example

| long blah(long a, long b) {
| return a b a b

7unsigged long fib(unsigned long n
1 n
return 0O
else if (n
return 1
else

return fib(n-1 fib(n-2

21

An example

- long blah(long a, Tong b i Which argument goes in which register ?
| return a * b a+ b

7unsigged long fib(unsigned long n
1 n
return 0O
else if (n
return 1
else

return fib(n-1 fib(n-2

21

An example

 long blah(long a, Tong b i Which argument goes in which register ?
| return a * b a+ b

7unsigged long fib(unsigned long n
1 n
return O
else if (n
return 1
else
return fib(n-1 fib(n-2

%rsi, %rax
%rdi, %rax

%rdi, %rsi
%rsi, %»rax

21

An example

 long blah(long a, Tong b i Which argument goes in which register ?
| return a * b a+ b

7unsigged long fib(unsigned long n
1 n
return O
else if (n
return 1
else
return fib(n-1 fib(n-2

$-42,
- $-12,
%rsi, %rax B blah

%rdi, %rax i $2,

%rdi, %rsi » $15,

%rsi, %rax] %Brax,
fib

21

An example

 long blah(long a, Tong b i Which argument goes in which register ?
| return a * b a+ b

ﬂunsig?ed long fib(unsigned long n
1 n
return O
else if (n |
return 1 : 7 %rl4
else %rbx
return fib(n-1 fib(n-2 ! : %rdi, %rbx
| | %rdi, %rdi
LBB1_3
$1, %rbx
LBB1_5
$1, %ebx

%rox, %rax
LBB1_4

-1(%rbx), %rdi
fib ‘
, %rax, %rl4
» $-2, %rbx
%rdi : %rbx, %rdi
%rs - fib
- %rld, %rax
%eax : :
%eax - %rbx
%rdi || %rl4

21

Stack frame

Stack frame

 Each function call takes up space on the stack

22

Stack frame

 Each function call takes up space on the stack

22

Stack frame

return addr
 Each function call takes up space on the stack

* First any arguments that had to be pushed on the
stack

22

Stack frame

return addr
 Each function call takes up space on the stack

* First any arguments that had to be pushed on the
stack arg 8

* Then the return address arg 7

return address

22

Stack frame

return addr

 Each function call takes up space on the stack

* First any arguments that had to be pushed on the
stack arg 8

* Then the return address arg 7

* Then storage for local variable / spilling register return address

local 1

local 2

22

Stack frame

return addr

 Each function call takes up space on the stack

* First any arguments that had to be pushed on the
stack

e Then the return address

* Then storage for local variable / spilling register Stack frame

e We call all this the function’s stack frame

22

Stack frame

return addr
 Each function call takes up space on the stack

* First any arguments that had to be pushed on the \‘
stack '| arg 8
* Then the return address arg 7
* Then storage for local variable / spilling register Stack frame return address

e We call all this the function’s stack frame local 1

local 2

1| M

* Each function call gets its own stack frame on
the stack.

return addr

IHH

22

Stack frame

Each function call takes up space on the stack

* First any arguments that had to be pushed on the
stack

e Then the return address

* Then storage for local variable / spilling register
We call all this the function’s stack frame

Each function call gets its own stack frame on
the stack.

Stack frame are freed up when function exit, in
reverse ordre

22

Closing words

Closing words

This i1s not an exhaustive presentation, here’s a list of things
we haven’t touched

23

Closing words

This i1s not an exhaustive presentation, here’s a list of things
we haven’t touched

e Mixing different register sizes (/)

23

Closing words

This i1s not an exhaustive presentation, here’s a list of things
we haven’t touched

e Mixing different register sizes (/)

e Some integer instructions

23

Closing words

This i1s not an exhaustive presentation, here’s a list of things
we haven’t touched

e Mixing different register sizes (/)
e Some integer instructions

* Floating point, vector instructions

23

Closing words

This i1s not an exhaustive presentation, here’s a list of things
we haven’t touched

e Mixing different register sizes (/)
e Some integer instructions
* Floating point, vector instructions

e Everything about privileges / OSs / performance /
debugging.

23

Closing words

This i1s not an exhaustive presentation, here’s a list of things
we haven’t touched

e Mixing different register sizes (/)
e Some integer instructions
* Floating point, vector instructions

e Everything about privileges / OSs / performance /
debugging.

 Microarchitecture (how CPU really work)

23

Closing words

This is not an exhaustive presentation, here’s a list of things
we haven’t touched

e Mixing different register sizes (/)
e Some integer instructions
* Floating point, vector instructions

e Everything about privileges / OSs / performance /
debugging.

 Microarchitecture (how CPU really work)

* See bibliography on the course website

23

Questions

