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Abstract—Covert channels evade isolation mechanisms be-
tween multiple parties in the cloud. Especially cache covert
channels allow the transmission of several hundred Kkilobits
per second between unprivileged user programs in separate
virtual machines. However, caches are small and shared and
thus cache-based communication is susceptible to noise from
any system activity and interrupts. The feasibility of a reliable
cache covert channel under a severe noise scenario has not
been demonstrated yet. Instead, previous work relies on either
of the two contradicting assumptions: the assumption of direct
applicability of error-correcting codes, or the assumption that
noise effectively prevents covert channels.

In this paper, we show that both assumptions are wrong.
First, error-correcting codes cannot be applied directly, due
to the noise characteristics. Second, even with extraordinarily
high system activity, we demonstrate an error-free and high-
throughput covert channel. We provide the first comprehensive
characterization of noise on cache covert channels due to cache
activity and interrupts. We build the first robust covert channel
based on established techniques from wireless transmission proto-
cols, adapted for our use in microarchitectural attacks. Our error-
correcting and error-handling high-throughput covert channel
can sustain transmission rates of more than 45 KBps on Amazon
EC2, which is 3 orders of magnitude higher than previous covert
channels demonstrated on Amazon EC2. Our robust and error-
free channel even allows us to build an SSH connection between
two virtual machines, where all existing covert channels fail.

I. INTRODUCTION

With the advent of cloud computing and virtualization,
CPU caches have been largely studied in terms of covert
channels. Covert channels are unauthorized communication
channels between two parties, a sender and a receiver. The
basis for cache covert channels is the difference in latency
for memory accesses, depending on whether data is cached or
not. Caches are well-suited for covert channels in virtualized
environments, as they are not virtualized, and are thus shared
across virtual machines of a same physical machine. Moreover,
caches are a fast type of memory, shared across the cores of
a CPU, and coherent between CPUs of the same machine.
Therefore, state-of-the-art attacks have moved from same-core
to cross-core and even cross-CPU covert channels.
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However, caches are currently quite small due to the price
of SRAM and its physical footprint on dies. They are a few
megabytes at most, compared to gigabytes of main memory.
Caches are also shared between processes and between tenants
in virtualized environments. Cache-based communication is
therefore susceptible to noise from any system activity and
interrupts. Indeed, data gets unintentionally evicted by other
programs, e.g., memory intensive programs, the operating sys-
tem, and the hypervisor. In addition to this, operating system
and hypervisor scheduling is also a source of noise, as sender
and receiver are not necessarily scheduled at the same time.
Noise causes substitution errors as well as synchronization er-
rors such as inserted and deleted bits in cache covert channels.
Noise is a well-known problem in cache attacks, but it has not
been studied in more depth than the observation of an increased
error rate. Yet, some applications of covert channels require
error-free communication, e.g., an SSH connection between
the two communicating parties.

Noisy communication channels are not a unique issue
of CPU caches: there are many protocols and techniques to
cope with noise in wireless protocols, such as error detection
and error correction schemes. Previous work on cache covert
channels relied on one of the two contradicting assumptions:
the assumption that an error-correcting code can be directly
applied, and the assumption that noise effectively eliminates
covert channels [5], [32].

In this paper, we show that both assumptions are wrong.
We show that caches offer some unique challenges in terms
of errors and how to deal with them at the protocol level.
In particular, the fact that sender and receiver may not be
scheduled at the same time introduces synchronization errors.
The receiver can completely miss bits when it is not scheduled,
and wrongfully read additional bits when the sender is not
scheduled. Sender and receiver have no trivial way to detect
when the other process is not scheduled. In addition to this,
virtualized environments do not offer a synchronized clock
between sender and receiver.

We comprehensively characterize errors on cache covert
channels, and use this knowledge to build a robust error-
handling protocol. We thus show that even in the presence of
heavy noise due to high system activity in cloud environments
our protocol still achieves a throughput of up to 45.09 KBps
between two instances of Amazon EC2. Using our robust
covert channel, we demonstrate a reliable SSH connection
between two virtual machines. This is not possible with any
previous covert channel between virtual machines, as even a
minuscule error rate will prevent a sustained connection.



To summarize, we make the following contributions:

1) We comprehensively characterize noise on cache covert
channels, due to cache activity and interrupts.

2) We propose a protocol that handles the physical layer
as well as the data-link layer of a robust cache covert
channel.

3) We evaluate our covert channel between two virtual ma-
chines on Amazon EC2 and obtain a throughput as high
as 45.25 KBps, with 0% error rate. The communication
stays error-free in the presence of extraordinarily high
system activity, where we obtain between 34.27 KBps and
45.09 KBps. This is 3 orders of magnitude faster than any
previously demonstrated covert channel on Amazon EC2.

4) Using our robust and error-free channel, we demonstrate
an SSH connection between two virtual machines on
Amazon EC2, where existing covert channels fail.

Section II presents the background and state of the art.
Section IIT describes the covert channel and the measurement
method, and introduces our problem statement. Section IV
characterizes noise on the cache, both due to cache activity and
interrupts. Section V proposes our new protocol. Section VI
evaluates the speed and robustness of our covert channel.
Section VII gives a practical application: building an SSH
connection over our covert channel.

II. BACKGROUND AND STATE OF THE ART
A. CPU Caches

CPU caches are a type of memory that is small and fast,
that the CPU uses to store copies of data of main memory in
order to hide the latency of memory accesses. Modern CPUs
have different levels of cache, typically three, varying in size
and latency: the L1 cache is the smallest and fastest, while the
L3 cache, also called last-level cache, is bigger and slower.

Modern CPUs are set-associative, i.e., a cache line is stored
in a fixed set, as determined by either its virtual or physical
address. Each line can then be stored in any of the ways
of this cache set, as determined by the replacement policy.
The L1 cache typically has 8 ways, and the last-level cache
has 12 to 20 ways, depending on the size of the cache. The
replacement policy is a crucial element for the performance of
the cache. For example, for Intel CPUs until Sandy Bridge, the
replacement policy has been pseudo least-recently used (LRU).
Since Ivy Bridge, this has changed and is now undocumented.

The last-level cache is physically indexed and shared across
cores of the same CPU. It is also inclusive of L1 and L2,
which means that all data stored in L1 and L2 is also stored
in the last-level cache. To maintain this property, every line
evicted from the last-level cache is also evicted from L1 and
L2 caches. The last-level cache, though shared across cores,
is also divided into slices. The undocumented hash function
that maps physical addresses to slices in Intel CPUs has been
reverse-engineered [23], [44], [17].

B. Cache Attacks

Cache attacks are based on the difference of timing be-
tween cached and non-cached memory. They can be applied
to build side-channel attacks and covert channels alike. Among

cache attacks, access-driven attacks are the most powerful
ones, where an attacker monitors its own activity to infer the
activity of its victim, and in particular which cache lines or
cache sets the victim has accessed.

Access-driven attacks can further be categorized into two
types, depending on whether or not the attacker shares memory
with its victim, e.g., using a shared library or memory dedu-
plication. Flush+Reload [43], Evict+Reload [13] and Flush+
Flush [12] all use shared memory, that is then shared in the
cache, to infer whether the victim accessed a particular cache
line. The attacker evicts data from the victim either by using
the c1flush instruction (Flush+Reload and Flush+Flush), or
accessing congruent addresses, i.e., cache lines that belong
to the same cache set (Evict+Reload). These attacks have a
very fine granularity (i.e., a 64-byte cache line), but they are
not applicable in any environment where shared memory is
not available. This is the case for some cloud providers, who
disable memory deduplication for security concerns.

The second type of access-driven attacks, called Prime+
Probe [26], [21], [19], does not rely on shared memory and is,
therefore, applicable in more restrictive environments. As the
attacker has no shared cache line with the victim, it cannot use
the c1flush instruction but rather has to access congruent
addresses to evict data from the victim. The granularity of
the attack is coarser, i.e., an attacker only obtains information
about which cache set the victim accessed, and is also more
prone to noise. Indeed, in addition to the noise caused by other
processes, the replacement policy makes it hard to guarantee
that data has actually been evicted from a cache set [11].

In the remainder of this article, we focus on Prime+
Probe, as it has the lowest requirements concerning execution
privileges and is more prone to noise than the other cache
attacks.

C. Cache Covert Channels

Table I summarizes state-of-the-art cache covert channels.
The first cache covert channel has been theoretically shown by
Hu [16] in 1992. Percival [26] was the first to practically build
a covert channel on the L1 cache, and estimated the capacity
to 400KBps, “using an appropriate error-correcting code”.
Ristenpart et al. [30] were the first to build a cache covert
channel in a cloud environment, with 0.2bps between two
virtual machines on Amazon EC2. Xu et al. [41] studied the
disparity between theoretical and practical results, in particular
in virtualized and noisy environments. From a quiet to a noisy
environment, they showed a decrease of the bit rate from
215.11 bps to 81.19 bps, and an increase of the error rate from
5.12% to 28%.

Covert channels on the last-level cache allow the sender
and the receiver to run on different cores of the same CPU.
Wu et al. [40] described the first cross-core covert channel
using Prime+Probe on a Nehalem CPU and were followed by
Maurice et al. [24] and Liu et al. [21] on more recent CPUs.
Gruss et al. [12] later demonstrated cache covert channels
using Flush+Reload and Flush+Flush. The authors built a
framework with a protocol to be able to compare different
cache covert channels. The protocol includes retransmission
in case the receiver did not receive a packet in order to
create a low-error covert channel. However, it does not include



TABLE I: State-of-the-art cache covert channels. Bit rates have been converted to bytes per second for comparison.

Article Type Setup Bit rate Error rate  Remarks

Hu [16] - - - - Theoretical

Percival [26] Prime+Probe Native 400 KBps - Covert channel on L1, bit rate is an estimation with error-correcting codes
Ristenpart et al. [30] Prime+Probe Cloud 0.025 Bps - Amazon EC2

Xu et al. [41] Prime+Probe Virtualized 26.9Bps 5.12% Quiet setup

Xu et al. [41] Prime+Probe Virtualized 10.1Bps 28% Noisy environment: third VM added

Wu et al. [40] Prime+Probe Native 23.8 KBps - Error rate not measured, Nehalem CPU

Maurice et al. [24] Prime+Probe Native 129.1Bps 1.6% Quiet setup, no protocol, receiver decodes bits offline

Maurice et al. [24] Prime+Probe Virtualized 93.9Bps 5.7% Quiet setup, no protocol, receiver decodes bits offline

Liu et al. [21] Prime+Probe Virtualized 75 KBps 1% RZ self-clocking encoding, busy wait between bits

Gruss et al. [12] Prime+Probe Native 67 KBps 0.36% Quiet setup, 5B packets, 1B sequence number, CRC-16 checksum
Gruss et al. [12] Flush+Reload ~ Native 298KBps  0.00% Quiet setup, 28 B packets, 1B sequence number, CRC-16 checksum
Gruss et al. [12] Flush+Flush Native 496 KBps 0.84% Quiet setup, 28 B packets, 1 B sequence number, CRC-16 checksum

error-correcting codes and has not been evaluated in a noisy
environment. Yet, with noise, the retransmission rate will
increase, and the bit rate will decrease.

The fastest Prime+Probe cross-core covert channel in the
literature reports a bit rate of 75 KBps for a 1% error rate [21].
However, note that the error rate is calculated using an
edit distance, i.e., counting the minimum number of single-
character edits, including insertion and deletion, to transform
one string into another. Yet, insertion and deletion errors cause
numerous substitution errors, which cannot be corrected by an
upper layer in a protocol. Thus, the practical utility of such a
covert channel is severely limited.

D. Countermeasures Against Cache Covert Channels

The techniques used to build cache attacks are the same for
covert channels and side-channel attacks. Thus, both share the
same countermeasures. The countermeasures can target timing
sources by either removing them or making them more coarse-
grained. They can also target the timing differences themselves
by either removing them or introducing noise such that they
are not exploitable anymore.

Countermeasures introducing noise include Diippel [46], a
kernel component that cleanses private caches by priming all
the sets until the entire cache has been evicted. This component
has been created to cleanse shared-time caches, on CPUs
not equipped with simultaneous multithreading (SMT). As
it targets private caches, it defends against same-core cache
attacks, and would need to be modified to defend against the
newer cross-core cache attacks on the last-level cache, where
the spy and the victim can run concurrently. Fuchs and Lee [9]
propose to add a randomized prefetching policy that performs
additional memory accesses and makes the behavior of the
cache less predictable. Brumley [5] and Schmidt et al. [32]
also cite noise as a countermeasure against covert channels.

Adding noise to caches has also been investigated on the
attacker side to improve attacks. Indeed, Gruss et al. [13] and
Allan et al. [1] have shown that by constantly flushing data,
an attacker can slow down an encryption process and therefore
amplify side-channel leaks to get more information.

E. Efficient Protocols For Noisy Channels

There are different possibilities to handle transmission er-
rors in a communication channel. A first approach is to retrans-
mit a data packet until its successful arrival, which is indicated

either via an acknowledgment (ACK) or its counterpart negative
ACK (NACK). To detect bit errors, parity bits are added to
each packet by the sender. The receiver then checks if all the
parity equations are fulfilled. If so the incoming transmission
is valid. Another approach is to detect the presence of noise,
e.g., an ongoing concurrent transmission, before starting to
send. This avoids colliding with either ongoing transmission
or channel activity strong enough to corrupt and destroy the
message being sent. If so, the sender postpones its transmission
for a certain time, which increases with every successive
postpone, up to a maximum when the packet is dropped.
This approach, typical to wireless communication, is known
as carrier sense multiple access. A third approach is to avoid
noise on the channel altogether by using a channel which is not
in use yet or changing the communication channel periodically.
This approach is known as channel hopping. Even though this
method evades much temporal interference and is far more
resilient than just retransmitting, it is not always possible.

If sender and receiver are not synchronized well, a differ-
ent category of errors occurs: synchronization errors. If the
receiver’s sampling rate is too high, the receiver reads more
symbols than the sender has sent. If the sampling rate is
too low, i.e., the sender transmits faster than the receiver is
able to sample, some symbols are not seen by the receiver.
It is necessary to deal with these errors first, as they often
make other measures taken against noise unusable, causing
too many substitution errors. Methods against synchronization
errors include sampling more often to increase certainty about
the measured signal or using a coding scheme which includes
timing information (e.g., Manchester coding). One adopted
countermeasure is to slow down communication sufficiently
to achieve reasonable synchronization. It is also possible to
add redundancy to messages to recover from single bit syn-
chronization errors, but this is ineffective against burst errors
and deletion or insertion of whole bytes [25]. Therefore, a
basic form of synchronization must exist before these codes
are applicable. Wireless sensor networks also suffer from
synchronization problems: Due to their goal to save energy, the
sensor nodes switch on their radios only for short periods of
time to check for incoming transmissions. This is called radio
duty-cycling. To make resynchronization easier, the sender
starts transmissions with a specific pattern, called preamble,
before sending the actual data [6].

Shannon’s theorem [33] states that it is possible to compute
the maximum capacity of a channel and to achieve error-free
transmission through a noisy channel if the data is sufficiently



encoded and the noise is not too strong. Since the introduction
of this theorem, the community has been developing codes
to either detect and correct errors in data transmission. With
error detection codes, the message is augmented with extra
redundancy bits in order to detect errors, also called parity
bits. There are also special codes that can detect all bit flip
errors, such as the Berger codes [2], which have been used
in ECC RAM. Error-correcting codes comprise block codes
and convolutional codes. With block codes, fixed-sized blocks
are encoded using methods such as the Reed-Solomon codes
[29]. Although quite old, Reed-Solomon codes were the most
widely used error-correcting codes [39] and are still used
today, e.g., for correcting errors in Android verified boot [35].
Classical block codes are deterministic and perform well,
even without dedicated hardware. Convolutional codes use
additional information about received symbols in the form of
probabilities, which are then used to find the word which was
most likely transmitted. While being introduced rather early
[10], [38], these codes require significant computational power
and have started to be used only recently. These codes benefit
greatly from dedicated hardware and are used in today’s latest
communication technologies. Examples are low-density parity-
check codes and turbo codes [3].

Often, more than one code is used to enable better error
correction capabilities. This technique is called concatenation.
One error-correcting code is applied to the words which are
transmitted, while another code is applied to the packet. In
addition, the encoded data can be interleaved such that burst
errors do not destroy blocks that are too big to correct.

F. Operating System and Hypervisor Scheduling

On modern computer systems, the number of processes
exceeds the number of cores and processors by far. Thus, it is
still necessary to run time-sharing algorithms that frequently
interrupt the process running on a CPU core to hand over
control to another waiting process. Besides hardware inter-
rupts originating from I/O devices and software interrupts
such as page faults, the most frequent interrupt source are
timer interrupts mostly used for scheduling. These scheduling
interrupts can be periodic or deadline driven (e.g., earliest-
deadline first) [18]. If the hardware is configured to issue
periodic timer interrupts, the timer interrupts will occur at
a constant frequency that is fixed to real time and does not
depend on the actual speed of the CPU. With deadline driven
timer interrupts, the operating system sets a number of CPU
cycles after which the interrupt will occur. On modern systems,
the interrupt frequency is typically in the range of 1 Hz to 1000
Hz [7], [31]. Similarly to the operating system, hypervisors in
cloud systems use timer interrupts to control the scheduling of
the different virtual machines.

Scheduling has also been exploited for microarchitectural
attacks and instrumented for countermeasures against microar-
chitectural attacks. Gullasch et al. [14] exploited a flaw in
the deadline-driven “completely fair scheduler” of Linux to
reduce the time the victim gets scheduled to a minimum. Thus,
they were able to measure the cache footprint of the victim
application at a much higher frequency. Varadarajan et al. [36]
instrumented the scheduler of a hypervisor to prevent frequent
context switches between an attacker virtual machine and a
victim virtual machine.
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Fig. 1: Histogram for time taken to receive ‘0’s and ‘1’s.

III. PROBLEM STATEMENT

In this Section, we describe our Prime+Probe covert chan-
nel, the challenges we face in making it robust, and in
particular the type of errors we encounter.

A. Description of the Covert Channel and Measurements

At a high level, the sender transmits bits by evicting cache
lines from the receiver. The receiver constantly probes a set in
his L1 cache. These cache lines are also present in the last-
level cache due to the inclusive property. To transmit a ‘0’, the
sender does nothing. The lines thus stay in the L1 cache of
the receiver, which thus observes a short timing to probe its
lines. To transmit a ‘1°, the sender accesses cache lines that are
mapped to the same set in the last-level cache as the receiver’s.
The lines of the receiver are thus evicted from the last-level
cache, and consequently from the L1 cache due to the inclusive
property. The receiver thus observes a long timing to probe its
lines, as they have to be retrieved from the DRAM.

Prime+Probe cache covert channels are based on timing
information, i.e., whether a received bit is a ‘0’ or a ‘1’
depends on the timing difference measured over a defined
set of memory accesses. The measurement itself thus takes
a different amount on time depending on the bit that is
transmitted. Moreover, cache hits and cache misses themselves
have varying timings, influenced by a multitude of factors
such as unrelated system activity. Thus, the timing difference
measured also varies independently of the actual bit that is
transmitted, due to the memory accesses that are performed.
Figure 1 shows a histogram of the measured time for the set
of memory accesses when the sending party transmits a ‘0’
or a ‘I’ on an Intel Core i7-4790. While the two cases are
clearly distinguishable, the exact time measured varies widely.
If a ‘O’ is transmitted, the access time is between 120 and
240 cycles in 93.59% of the cases. In 5.78% of the cases, the
access time was above 300 cycles due to noise. If a ‘1’ is
transmitted, the access time is between 380 and 800 cycles in
86.51% of the cases. In 8.25% of the cases, the access time
was below 300 cycles due to the cache eviction performed by
the sender process being unsuccessful or sender and receiver
evicting simultaneously.

The sender and receiver processes run independently and
have no way of communicating apart from the covert channel.
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Fig. 2: llustration of a normal transmission and the three different types of errors. Dashed lines represent the time when either

the sender or the receiver is not scheduled.

Thus, the sender cannot determine how many cycles it took the
receiver process to measure the transmitted bit. Hence, the op-
erations of the two processes are inherently not synchronized.

B. Measurement Errors

There are mainly two sources of errors in cache covert
channels. First, the cache is a resource shared with other
programs. It is a rather small memory, thus data gets evicted
by other concurrent programs. As eviction is also used by the
sender to transmit a bit, a heavy use of the cache creates
interferences with the covert channel in the form of false
positives for the receiver. It can also introduce false negatives if
the eviction is not successful. These kinds of errors are called
substitution errors. Second, sender and receiver are not always
running simultaneously, depending on the scheduler. As they
have no way of signaling that they are either not transmitting
or not receiving any bits, this results in insertion or deletion
errors on the receiver’s end.

These issues result in three distinct type of errors. Figure 2
illustrates a normal transmission and the effect of errors.

Substitution errors: Another program causes eviction of the
receiver’s lines, resulting in ‘0’ — ‘1’ bit flips. Substitution
from ‘1 — ‘0’ happens when the sender unsuccessfully
evicted the set.

Insertion errors: The sender is interrupted or not scheduled,
while the receiver still continues its measurements. The re-
ceiver will read consecutive ‘0’s while the sender is being
descheduled. If not handled correctly, the receiver will continue
to put the incoming transmission after the block of ‘O’s,
resulting in corrupted data after the first appearance of this
kind of error. Insertions of ‘1’s are possible in the case where
there is a lot of noise, but this happens less than insertions of
‘0’s.

Deletion errors: The receiver is interrupted during measure-
ment, which leads to a sequence of bits never being read and
lost without being noticed. If not handled correctly, the sender
will continue as if nothing happened; the result would be faulty
data beginning from the first occurrence of this error.

Insertion errors and deletion errors are synchronization
errors that are due to the changing sampling rate of both
the sender and the receiver. These errors are caused by
scheduling and are therefore burst errors. Synchronization
errors further complicate the problem, causing a dramatic
increase in substitution errors until the next synchronization—
if any—, as the receiver has the wrong symbol boundaries. It
is, therefore, necessary to first correct synchronization errors
before substitution errors.

C. On the Absence of a Common Clock

In a native environment, covert channels between processes
can be synchronized based on a common clock, such as
the time stamp counter. The time stamp counter provides
a high-resolution timestamp which is accessible through the
unprivileged rdtsc instruction. This cycle count can be used
for highly accurate measurements even on a sub-nanosecond
scale. While it is sometimes assumed that such a common
clock exists in cloud environments as well, this is in fact not
the case for security and compatibility reasons. For instance a
virtualized rdtsc can make sandbox detection more difficult.
At the same time virtualizing rdtsc incurs wide deviations
when compared inside two independent virtual machines. This
is due to the fact that the rdtsc base offset is frequently
adapted by the hypervisor to account for interrupts [22].
Hypervisor interrupts are sometimes completely hidden from
the virtual machine, i.e., the timestamp counter is not updated.
In fact, there is typically no common clock apart from very
coarse-grained clocks in the range of milliseconds. Even here
clock deviation can occur, depending on the hypervisor.

In order to reliably transmit and receive data, the com-
municating parties do not require a synchronized clock. The
clock does not deviate as long as the current party is running,
but the clock can deviate as soon as the communicating party
is descheduled. Wireless sensor networks have to deal with
similar problems, as the sending party often does not know if
its communication peer is awake. The communicating parties
using the cache covert channel have the problem that they are
switched off seemingly randomly, in contrast to sensor nodes,
which decide themselves when they switch off their radios.
Therefore, due to the emulated rdtsc and scheduling, we



TABLE II: Experimental setup.

Environment CPU model Cores  LLC associativity
Lab Core i5-5200U 2 12
Lab Core i7-4790 4 16
Lab Xeon E3-1220v3 2 16
Amazon EC2  Xeon E5-2670 8 20

need to resynchronize during communication, while sensor
nodes only need to synchronize once and note the wake-up
time of its peer.

Intuitively, a common clock might solve these problems.
Generally the transmitted signal can be used to derive a
common clock or also transmit a clock signal. However, the
transmission of a common clock would suffer from the same
issues as the transmission of the data itself. The only possibility
would be to transmit a self-clocked signal, which also needs
to be resilient against noise. Thus, the transmission of a clock
signal is possible but causes a huge overhead. As described
in Section III-B, sender and receiver can run simultaneously,
but due to interrupts and scheduling, there are phases where
one process is active but not the other. If the sender transmits
a clock signal and the receiver misses multiple clocks, the
receiver cannot detect this error. Similarly, the sender has no
way to detect that the receiver was sleeping. Thus, additional
bits would need to be transmitted to reduce the probability of
errors in the clock signal.

D. Problem Statement

While many of the errors that are encountered on our
channel have already been solved in communication engineer-
ing and information theory, there is no readily usable design
to solve the particular issues of our channel. Moreover, we
are aiming at a high capacity channel, while minimizing the
complexity of the protocol. It is, therefore, impossible to just
apply error-correcting codes as was hinted in previous work.

As we cannot influence noise or synchronization issues
on our channel, we apply existing methodology for wireless
communication. We start by characterizing noise on the chan-
nel, both due to other applications and the scheduler. We then
design a protocol that is capable of correcting these errors and
evaluate our covert channel in high-noise environments.

E. Experimental Setups

In the remainder of the article, we use the experimental
setups described in Table II.

For our experiments in a cloud environment, we used
Amazon EC2 g2.2xlarge instances. Recent works have already
shown how to acquire co-located instances with a victim [37],
[42], [17]. As the co-location step is not in the scope of
our paper, we obtain co-located instances by performing our
experiments on a dedicated host. The g2.2xlarge instances
are backed by 8 vCPUs from an Intel Xeon E5-2670, which
corresponds to 8 hardware hyperthreads according to Amazon.
The larger instance of this family, g2.8xlarge, has 32 vCPUs.
As a Xeon E5-2670 has 8 cores, and it is possible to fit 32
hardware hyperthreads on a single machine, we speculate that
one machine is composed of 2 CPUs, and we run 3 instances
on the same host.

Algorithm 1: Creating a heatmap

input : nb_sets: int, nb_ways: int, threshold: int,
nb_measure: int,
pointers: uint64_t[nb_sets][nb_ways]

output: expected: double[nb_sets]

cases < new int[nb_sets][nb_ways + 1];
expected <— new double[nb_sets];
for 1..nb_measure do
for s < 0 to nb_sets do

misses < 0;

for [ < 0 to nb_ways do

time < probe_line(s,l);
L if time > threshold then misses++ ;

cases|s|[misses]++;

for s < 0 to nb_sets do
for [ < 0 to nb_ways + 1 do
| expected[s]+ = 1 x cases|s][l]/nb_measure;

IV. CHARACTERIZING NOISE ON THE CACHE

In this Section, we characterize the noise on the channel
due to cache activity of other programs as well as interrupts.

A. Characterizing Eviction by Other Programs

We first characterize unwanted cache line evictions due
to cache activity of other programs. Heatmaps have already
been used to find cache usage patterns on the L1 cache [46],
[36], [9]. We propose a new heatmap to help to determine the
parameters of the covert channel, by computing the expected
value of the number of evicted cache lines for every set of the
last-level cache.

To do so, we run a Prime+Probe attack on all sets, as
described in Algorithm 1. We start with an array of addresses
mapping to every set, with nb_ways addresses per set. We
probe all addresses mapping to one set, and measure the
probing time of each line to determine if it is a hit or a
miss. We thus count the number of evicted lines for each
set. The probing function probe_line first accesses a line,
then waits for some time, so that other programs have the
time to evict it, and finally times the access of this line. The
waiting time is performed using the sched_yield () Linux
function. We repeat this procedure for every set, and repeat
the measurements over all sets to compute probabilities of the
number of cache lines evicted, and subsequently the expected
value for each set.

The heatmap of three scenarios can be seen in Figure 3, for
an 15-5200U, with 10240 measurements. The expected value
is on average 0.38 on a quiet system, 3.89 while watching a
1080p video, and 10.41 while running stress -m 2. We
observe that noise is equally distributed over all sets (i.e., the
variance is very low), and that as expected, the more memory-
intensive the application, the higher the expected number of
evicted cache lines. This metric can be used both to measure
the noise caused by other applications on the cache and to
choose parameters for the covert channel.



(a) Quiet system:
mean = (.38,
variance = 0.016.

(b) Watching a 1080p video:
mean = 3.89,
variance = 0.0043.

(c) Running stress -m 2:
mean = 10.41,
variance = 0.0010.

Fig. 3: Heat maps of the expected value for the number of lines evicted by other programs in 3 scenarios, on an i5-5200U
(12-way cache). Small square represent last-level cache sets. The height of a square represents the number of evicted lines.

The heatmap gives us a good visual indication of the kind
of noise. However, to choose optimal error-correcting codes,
we are interested in a mathematical model of the noise. The
overall noise in a cache set is a summation of different noise
sources. Each program running on the CPU accesses the cache
in an unpredictable manner, i.e., the access pattern appears
to be random for an observer. According to the central limit
theorem, the summation of a large number of random effects
will be approximately normal [8]. Assuming that the noise is
Gaussian is, therefore, a valid assumption in this scenario.

The exact location of data inside a cache is determined
by its address and consequently also the cache slice function.
As programs have no control over these parameters, the
data is uniformly distributed over the cache. The heatmap
visualization shows that this is indeed the case for the em-
pirical experiments. Therefore, we assume that the cache sets
are independent and identically distributed random variables.
Under this assumption, it is sufficient to analyze only one cache
set to characterize the noise.

Similar to the heatmap, we analyze one set over time.
At discrete time intervals, we determine the number of lines
that have been evicted from the cache set. If this number
is higher than our threshold for sending a bit, the set is
“destroyed” by noise, represented as —1 in the time series.
In contrast, if fewer lines are evicted, the set is usable for
transmission, represented as 1 in the time series. Applying the
autocorrelation function p(7) on this data reveals underlying
noise patterns. We repeated this analysis for multiple cache sets
over varying time spans. As a result, p(7) was always zero for
non-zero 7. Given these empirical results, we can assume that
the observed signal is white noise.

The Gaussian white noise generated by processes running
on the same CPU is always present in our channel. We
can model the background noise as additive white Gaussian
noise (AWGN). An AWGN channel does not account for
different noise sources present in wireless communication such
as fading, dispersion or interference. However, if these effects
play no role, the model is sufficient to describe the noise [15].
The absence of such physical effects makes the AWGN an
accurate model. Real-world applications can be found in deep-

space communication [20]. The model applies to cache attacks
as well, as there are no physical effects generating noise.

One important property of Gaussian noise is that the
noise is independent of the data. As the sender and receiver
access the cache as well, it seems that we cannot guarantee
this property. Inevitably, there will be sets containing data-
dependent values. However, as they form only a subset of all
available cache sets, we will always be able to use sets that
are independent of the data.

Modeling the background noise as AWGN is a common
principle in wireless sensor networks. Most of the research in
the area of wireless communication view AWGN as a standard
model to characterize wireless transmission. AWGN is the
worst-case additive noise in general wireless networks if the
noise is independent of the transmitted data [34]. Having a
robust communication over this channel guarantees that the
communication will work in all other noise scenarios at least
as well, as long as there are no burst errors. However, to handle
burst errors, encoded packets can be interleaved.

B. Characterizing Interrupts

As already discussed, scheduling introduces either insertion
or deletion errors. These errors are in all cases burst errors.

Hardware interrupts are always handled in kernel space.
Thus, control is handed to a kernel thread for some time,
just as regular scheduling interruptions. Therefore, we do not
distinguish between hardware and scheduling interrupts.

The frequency of the Linux process scheduler influences
the running time after which a process is interrupted. This
frequency depends on several kernel parameters, such as
CONFIG_NO_HZ or CONFIG_HIGH_RES_TIMERS. We de-
rive the maximum timer interrupt frequency by requesting such
interrupts and measuring their time difference. This gives the
highest frequency we have to expect for scheduling interrupts.
Depending on the CPU model, we observe frequencies of up to
1 MHz. In order to calculate the average length of a desched-
uled phase, we require the average scheduling frequency. We
read the number of schedules s from /proc/self/status
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after a fixed time ¢{. We observe an average scheduling fre-
quency of 85 Hz. During the time ¢ we measure the CPU time
tcpy of the process, i.e., the time the process actually runs
on the CPU. The average length of the descheduled phase is

t—t
then tschedule = EPU .

The length of the descheduled phase is heavily affected
by the current CPU usage. The time a process is not running
on the CPU is directly proportional to the number of active
processes. Figure 4 shows the results of measurements con-
ducted on an Intel Core 17-4790. For low CPU utilization, the
length of an average descheduled phase is 10 us. The time our
program is not scheduled is below 1 ms each second. For high
CPU utilization, the length of a descheduled phase increases
to several milliseconds. At a scheduling rate of 85 schedules
per second, the process is not running for several hundred
milliseconds per second.

In a quiet environment, one solution to prevent errors
caused by not being scheduled is to increase the transmission
time of one bit. If the transmission time exceeds the time it
takes to get re-scheduled, no bit is lost. The average length of
a descheduled phase requires a minimum transmission time of
10 ps for one bit, resulting in a maximum transmission speed
of 100,000 bits per second. For higher CPU utilization, i.e.,
under noise, this would again introduce synchronization errors
and therefore require even slower transmission speeds. Hence,
we will instead ensure that a word is sufficiently small to be
transmitted during one scheduling.

V. ROBUST CACHE COVERT CHANNELS

This Section contains the description of the communication
protocol we developed for the covert channel, first on the
physical and then on the data-link layer. The data-link layer
receives a buffer with data which is to be transmitted. Before
transmission starts, the data is divided into chunks of the same
size, which are afterwards enhanced with error correction,
resulting in a packet. Then transmission is started, where each
packet is divided into words small enough to be transmittable
easily in between scheduling. These words are then again
encoded to guard them against synchronization errors. The
whole encoding process can be seen in Figure 5 including the
requests sent on the physical layer. We will explain in detail
how every layer works in the remainder of the section.

A. Physical Layer

The physical layer is concerned with transmitting words as
a sequence of ‘0’s and ‘1’s. It has to make sure that the receiver

Algorithm 2: Sender transmitting a ‘1’

input: nb_ways: int, addrs: int[nb_ways]

for i < 0 to nb_ways — 1 do
*addrs[i];
*addrs[i+1];
*addrs[i];
*addrs[i+1];

Algorithm 3: Receiver accessing a set.

input: nb_probes: int,
addrs: int[nb_probes]

for i < 0 to nb_probes — 2 do
*addrs[i];
*addrs[i+1];
*addrs[i+2];
*addrs[i];
*addrs[i+1];
*addrs[i+2];

can reliably detect incoming transmissions. Additionally, it
has to take decisions about the encoding on the medium
itself as well as dealing with synchronization errors. Words
consists of multiple symbols (single bits) that are transmitted
simultaneously.

1) Transmitting a symbol: Transmitting and receiving bits
relies on priming and probing lines of set associative caches.
In general in wireless communication, not only one but several
bits per symbol are transmitted using different modulation
techniques, such as amplitude modulation, phase-shift keying
or frequency modulation. These methods are not available due
to the nature of the signal and the unreliable clock.

To transmit any information, the sender primes lines in
one last-level cache set. It has to prime enough lines in order
to actually evict the receiver’s lines inside the same last-level
cache set, leading to an eviction from the receiver’s L1 cache
set. Depending on the number of lines evicted from the L1,
the receiver could then infer which symbol was transmitted.
The minimum of information to transmit is either achieving
eviction (‘1”) or not (‘0’). The sender does not need to evict
all lines of this last-level cache set, as the L1 has fewer ways
than the last-level cache. However, there is no way for it to
know which lines of the last-level cache are present in the L1
cache set of the receiver. In practice, we found that the optimal
number of lines primed by the sender is the number of ways in
the last-level cache. Since Ivy Bridge, the replacement policy
is not pseudo-LRU anymore. To increase the probability of
evicting the set, we access cache lines with the same patterns
as described by Gruss et al. [11]. Algorithm 2 describes set
eviction.

To receive any information, the receiver probes nb_probes
lines in one L1 cache set. At the minimum, the receiver has
to probe one line. Using more lines opens up the possibility
to transmit more data through one set. Intuitively, probing all
L1 lines and counting the number of evictions seems to be the
best way to achieve the maximum of bits per symbol, but it
incurs the risk of having interferences with lines being evicted



to L2 and last-level cache. This can happen either because
of the sender itself probing more than 8 lines—as the LI
is 8-way associative—or because of other programs even in
the case the receiver probes less than 8 lines. However, even
at a lower number of lines probed, counting the number of
evicted lines proved to be too unreliable to infer more than 1
bit of information as self-eviction and interference by other
programs introduced too much uncertainty. Therefore, only
one bit per cache set or symbol is transmitted. In practice,
we fixed nb_probes = 5. The decision whether a value of 0
or a value of 1 was transmitted is based on the number of
CPU cycles (cf. Section III-C) the memory accesses take. The
memory accesses are done in the same fashion as the receiver,
by accessing memory lines in a certain pattern, as shown in
Algorithm 3.

2) Transmitting words: In order to increase the capacity of
the covert channel, we can use spatial multiplexing to transmit
multiple symbols (bits) of a word concurrently. We do so by
exploiting the different cache sets, which do not interfere with
each other. In this setup, each channel is used to transmit
one bit, either a ‘0’ or a ‘1’. The total number of symbols
per word depends on the error detection codes that we apply.
The order of the bit fields is the order in which the sets are
probed. Spatial multiplexing is a difference with the covert
channel of Liu et al. [21], where only two sets are used, one
to transmit ‘1’s exclusively, and the other ‘0’s exclusively. In
order to introduce further reliability, the receiver reads every
word several, odd number of times and does a majority vote
on each symbol.

To avoid triggering the prefetcher and unintentionally
prefetching a line in another set, both the sender and the
receiver must access lines that are in different 4 KB pages, as
the hardware stride prefetcher does not prefetch lines across
page boundaries. The sender thus avoids to unintentionally
prime a set that should not be primed, which could cause the
receiver to receive a ‘1’ instead of a ‘0’. The receiver also
avoids prefetching a line that it could probe afterwards, risking
receiving a ‘0’ instead of a ‘1’.

3) Set agreement: Sender and receiver must agree on which
sets to use to transmit words. The main challenge to this part
is that an unprivileged process — or a process in a virtual
machine — cannot translate virtual addresses to physical
addresses, and therefore cannot target a specific set index in
a specific slice. As noted by previous work, it is still possible
for an unprivileged process to target a set index, irrespective
of the slice, using 2 MB pages [19], [21]. Indeed, a 2 MB page
gives the 21 least significant bits of a physical address, as they
are then the same for virtual and physical addresses. The set
agreement is done in two steps: (1) both the sender and the
receiver perform the same procedure to build eviction sets, (2)
they perform an agreement to ensure that they both target the
same set in the same slice.

In the first step of the set agreement, both the sender and the
receiver select candidate addresses that form eviction sets, i.e.,
addresses that belong to the same set in the same slice, without
knowing which exact slice. We describe a new method that
uses the information given by the reverse-engineered function
from Maurice et al. [23] without privileges, i.e., without using

physical addresses'. We call a slice physical index the slice
index computed with the addressing function on all bits of the
physical address. Knowing only a virtual address, we compute
the slice virtual index by truncating the 21 least significant bits
of the address and applying the reverse-engineered addressing
function. Inside a 2 MB page, all addresses that have the same
slice virtual index belong to the same slice. To each pair (page,
slice virtual index) corresponds a slice physical index. The
goal is to find the virtual index for each page, such that it
corresponds to the same physical index for all pages, without
knowing this physical index.

The following notations hold for a CPU with ¢ cores and
w-way last-level cache:
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p is a 2MB page.

1 is a set index, irrespective of the slice.

7 is a slice virtual index.

— Sp,i,;j is the set of addresses in a page p, that belong to the
same cache set, i.e., that have the same cache set index ¢
and slice virtual index j. |Sp; ;| = Na.

— Sr;; is the probe set in the reference page pr, composed of
addresses with the same set index ¢ and slice virtual index j.
It is sufficient that this set is composed of two addresses. The
addresses of the probe set must be evicted by the eviction
set, ensuring that we obtain addresses with the same set
index in the same physical slice.

— Se; ; is the eviction set for ¢ and 7, i.e., the set of addresses

evicting Sr; ;. Given a set Sr; ;, we thus seek to build the

set Se; ;.

P is the set of allocated 2 MB pages, i.e., p € P with
|P| = n,. We exclude the reference page p. from P. I is the
set of set indices, irrespective of the slice, i.e., ¢ € I with
|I| = 32. Indeed, to ensure that each address belongs to a
different 4 KB page, we only target sets that have addresses
aligned to 4 KB. There are 2048 set indices per slice, i.e., 32
different sets aligned with 4 KB pages—independently of the
number of cores. There are 16 addresses having the same set
index i per 2 MB page, i.e., n, = 16/c addresses belonging to
the set index ¢ in the same slice. We therefore need to allocate
np, = [w/n,| pages to obtain an eviction set of w addresses.

J is the set of slice virtual indices, i.e., j € J with |J| = c.
As we do not have the knowledge of all bits of the physical
address, the slice virtual indices are different for every 2 MB
page. For example, if an address a, in the reference page p;,
an address a; in a page p; and an address as in a page po
all belong to the same slice physical index 1, it is possible
that the virtual index for a, is 0, the one for a; is 2 and the
one for as is 3. As the indices in themselves are irrelevant,
we take as a reference the virtual indices of addresses in the
reference page p;. We thus seek to find the corrective offset o,
to apply for each page p, so that the slice virtual index j on
page p and the slice virtual index j. on the reference page p;
correspond to the same slice physical index. In our previous
example, o,, = 2 and op, = 3.

We build an eviction set Se; ; for a fixed set index ¢ and
the slice virtual index j, = 0. We start by constructing the set
of candidate addresses Sc¢;, which is our test eviction set. We

UIf the last-level cache addressing function is unknown, it is possible to
revert to the method of Liu et al. [21] which assumes no prior knowledge.



have Sc¢; ={S,,,;|p€ P,je€ J}, with |S¢;| = np x c. By
construction, this set contains the addresses of the eviction set
that we are searching for, as well as more addresses that belong
to the same set index, but a different slice. We seek to remove
these additional addresses to build an optimal set. Thus, for
one page p and set index ¢, we remove one set Sp; ; of n,
addresses from Sc;. We then test the eviction of the probe set
with this smaller test eviction set. If eviction succeeds, then the
set Sp;; is not part of the final eviction set, and we remove
it from the test eviction set. For one page, we remove sets
Sp.i,; testing all possible values for j until the probe set is not
evicted anymore. We have then found one set Sy, ; ; € Se; j,
i.e., the set of addresses for the page p belonging to the final
eviction set for the set index ¢. We repeat this procedure for
all pages p € P, until we have the final eviction set Se; ;. We
can compute the corrective offset o, for page p, o, = j ® jr,
with Sp,; ; € Se; ;. As we have fixed j. = 0, we have o, = j,
and we can now compute the eviction sets for other values of
Jr and 4.

In the second step of the set agreement, the sender and
the receiver ensure that they both target the same sets using
jamming agreement, inspired by the method of Boano et al.
[4] in wireless communication. The sender and receiver both
have a set of eviction sets. As every slice virtual indices
are computed given their own reference page, they do not
match between the sender and the receiver. The sender and the
receiver perform jamming and listening operations that are the
same as sending and receiving bits during the transmission.
The sender starts by jamming its first set, i.e., accessing its
own set in a loop that we fixed to 5, 000 iterations. The sender
then listens if the receiver jams back to agree on this set,
i.e., it measures the time it takes to access this set in a loop
that we fixed to 10, 000 iterations. The sender repeatedly jams
and listens to one set until it receives a signal back from the
receiver. During this time, the receiver listens to one of its own
eviction sets in a loop that we fixed to 10,000 iterations. If
the number of misses is greater than a threshold, the receiver
jams back for 15, 000 iterations. If not, the receiver repeats its
procedure for the next set. When the sender gets a signal for
one set, it repeats this procedure until they agree on enough
cache sets to proceed to the communication.

Table III shows the evaluation of the speed of the set agree-
ment, comprising of the set creation and jamming agreement,
in native environment and between two instances on Amazon
EC2, on 100 measurements, with varying degree of noise. In
a native environment on a 4-core i17-4790, without noise, the
agreement takes on average 0.30 s, with a standard deviation of
0.03. When running stress -m 1, the agreement takes on
average 0.40s, with a standard deviation of 0.02. On Amazon
EC2, the jamming agreement between two instances takes on
average 2.62s with a standard deviation of 0.15 without any
noise. When running high synthetic noise such as stress
whether on the sender, receiver or a third virtual machine, the
jamming agreement still works and takes between 2.74 and
3.47s. The jamming agreement is unlikely to succeed in case
of an extremely high noise such as stress -m 8 on the
third virtual machine. The reason is the high amount of noise
on many cache sets that is caused by the high system load. As
described in Section V-Al, the lack of a reliable amplitude on
our measurement makes it impossible to distinguish different
noise levels on a particular cache set. Thus, the two parties
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TABLE III: Speed of set agreement in native environment (i7-
4790) and between 2 instances of Amazon EC2, on 100 runs.

Average Standard

Environment speed (s) deviation Noise

Native 0.30 0.03 -

Native 0.40 0.02 stress -m 1

Amazon EC2 2.62 0.15 -

Amazon EC2 2.74 0.22 stress -m 1 on the sender VM
Amazon EC2 3.47 0.38 stress -m 1 on the receiver VM
Amazon EC2 2.95 0.27 stress -m 4 on the third VM
Amazon EC2 - - stress —-m 8 on third VM

cannot distinguish intensive noise on a cache set from cache
misses induced by the other party.

4) Handling Synchronization Errors: The covert channel
suffers from the three distinct errors described in Section III-B
of which two are due to synchronization issues described in
Section IV-B.

Deletion errors: Deletion can only appear if the receiver is
descheduled while the sender continues to transmit. Therefore
we apply a simple request-to-send scheme that also serves
as acknowledgment. Every word contains a 3-bit sequence
number, which is used to avoid desynchronization at the
low level. The receiver repeatedly transmits a request with a
sequence number. Upon reception, the sender begins to send
the requested word and transmits this word until the receiver
transmits the next request — which serves as acknowledgment
of the current request. The sequence number is encoded
with Hadamard codes to make the scheme robust against
substitution errors, resulting in a 7-bit request. We can always
recover 2-bit or detect errors as long as less than half the
bits are flipped. We can also use the nature of the substitution
errors to calculate the most probable candidates and increase
the error correcting capability. We chose to use the Hadamard
codes only for their error detecting capabilities as using them
otherwise introduced too many wrongly decoded requests.

‘0’-Insertion errors: Inserted ‘0’s happen if the sender is
descheduled while the receiver continues its measurements.
To reliably detect these errors we use Berger codes, which
consist in appending the number of ‘0’s contained in the word
to itself. The Berger code needs [log, (len(sgn + data) + 1)]
bits, in our case 4 bits. While Berger codes are typically
used to correct unidirectional substitution errors, we use their
properties to detect insertion errors. In addition to detecting
errors, Berger codes guarantee the property that a word cannot
consist solely of ‘O’s, since even if a data-word only consists
of ‘0’s, the transmitted word will contain ‘1’s. The Hadamard
codes used for the request do not guarantee non-zero words.
Therefore, we do not allow the sequence number ‘0’. The seven
different sequence numbers introduce a sliding window of size
6, i.e., the receiver can detect a sequence number mismatch
in the range +3. If there is a mismatch between sender and
receiver, e.g., the sender skips a word due to substitution errors,
which is accepted by the receiver. The position of the skipped
word is then noted and used in the error correction in the
data-link layer (see Section V-B).

By not allowing any ‘0’ words to be transmitted, ‘0’
readings are dismissed as errors and are not saved for the
majority vote. In addition, one reading before the first ‘0’
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interrupts.
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reading and after the last one are dismissed as well, due to
the chance of being affected by insertion errors as well.

Figure 5 shows the structure of the 19-bit word and the 7-
bit acknowledgment that are transmitted on the physical layer.
A 4-bit Berger code is used as Error Detection Code (EDC)
for the 12-bit data and the 3-bit sequence number (SQN) of
the word. The acknowledgment consists only of the Hadamard
encoded sequence number. Figure 6 shows the transmission in
the absence of noise. Interrupts caused by scheduling trigger
implicit retransmission of packets. In noisy environments, the
number of retransmissions will increase due to corrupt packets.

5) Channel Model: Channels in communication engineer-
ing are commonly modeled after a binary symmetric channel
(BSC). In this model, a signal arrives at the receiver with
probability 1 — p correctly or with probability p flipped. This
is the case for our covert channel, see Figure 7. The higher
the system load the higher the probability of a bit flip.

Our channel consists of several parallel BSCs which all
have the same error probability distribution, see Section V-A4.
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Fig. 7: The covert channel without synchronization errors: A
binary symmetric channel

Using that we can calculate the probability of receiving a word
without errors: peor worda = (1 —p)™ where n is the number of
bits transmitted per word. Therefore perr word = 1 —Deor,word-
Most of the erroneous words will be found by the Berger code
and will be corrected by retransmissions, while the rest will
have to be corrected by the data-link layer.

B. Data-Link Layer

The physical layer transmits symbols with a fairly low error
rate, but it is still not error free, a property which we need for
further applications. We showed in Section IV that the noise on
the channel is AWGN and will therefore uniformly destroy bits
and words with the error probability shown in Section V-AS.
Thus we chose a commonly used error-correcting code with
high decoding speed for small packets: Reed-Solomon codes
(RS codes). In order to achieve fast encoding and decoding
speed we use an RS word size of 12 bits for encoding, therefore
our packet size is 2'2 — 1 = 4095 RS words with 4095 —
len(data) parity. We use the word size of the physical layer
as RS word size, as an erroneous symbol does not affect more
than one RS word. For small packets of data (i.e., less than
100 bytes), it is not advisable to use a RS word size of 12,
as it would introduce a huge overhead in transmitted parity.
Therefore we choose to use 8 bits for RS word size in these
cases, resulting in 255 bytes per RS encoded packet.

We adjust the number of parity RS words to be able to
correct more than packet size - Deyr wora Symbols. RS codes
can correct up to |22™| RS words. Therefore, we have
twice the number of expected errors as parity RS words. If
the positions of the erroneous RS words are known, one can
correct up to a maximum of parity errors, which is exploited
if a symbol has been skipped by the physical layer. Using
these numbers, we decided to use 10% error-correcting code
409 parity and 3686 data RS words for packet size 4096 and
25 parity and 230 data RS words for packet size 255. With
these settings, we achieve error-free communication while
either a YouTube video is being watched or stress -m 1
is running.

VI

In this section, we evaluate our covert channel on different
environments, including between two instances of the Amazon
EC2 cloud, and in the presence of high system activity. For
our tests we transfer 9 MB of image data between the sender
and the receiver. To compute the error rate, we compare the
transmitted data bit-by-bit with the original. Our experimental
setups are described in Table II. The results are summarized
in Table IV.

EVALUATION



TABLE IV: Experimental results, with 10% error-correcting codes.

Environment Bit rate Error rate Corrected errors Noise

Native 75.10 KBps 0.00% 6333 -

Native 36.03 KBps 0.00% 13166  stress -m 1

Amazon EC2  45.25 KBps 0.00% 12996 -

Amazon EC2  45.09 KBps 0.00% 11574  web server serving files on sender VM

Amazon EC2  44.64 KBps 0.00% 11258 stress -m 1 on sender VM

Amazon EC2 44.25 KBps 0.00% 11819 web server serving files on third VM (10 concurrent users)

Amazon EC2  42.96 KBps 0.00% 8462 stress -m 2 on sender VM

Amazon EC2  42.26 KBps 0.00% 6974 stress -m 1 on receiver VM

Amazon EC2 37.42KBps 0.00% 6093 web server serving files on all three VMs, stress -m 4 on third VM, stress -m 1 on both
sender and receiver VMs

Amazon EC2  34.27 KBps 0.00% 7147  stress -m 8 on third VM, started after the jamming agreement

TABLE V: Channel capacity and observed errors with different
sizes for the error-correcting code (in relation to the total
packet size).

ECC Bitrate  Bit errors  Byte errors  Corrected errors
10%  43.70KBps 0 0 6922
4%  47.34KBps 0 0 6728
2%  48.76 KBps 105 59 6570
1%  46.69 KBps 9448 6120 2093
0%  48.29KBps 14841 9509 0

A. Lab-controlled Environment

We start by evaluating our covert channel in a native
environment, on a Core i7-4790 CPU. The sender and the
receiver are two unprivileged processes that do not share
memory. For our measurement, we transmitted 9 MB of data
over 2 minutes. Without any additional noise, our covert
channel achieves a bit rate of 75.10s KBps and an error rate
of 0.00%. We then increased the noise on the machine by
running stress -m 1. Our covert channel stays error-free
and achieves a bit rate of 36.03 KBps.

Figure 8 illustrates the need for error correction as well
as its different stages. Figure 8a illustrates the result of the
transmission, prior to solving scheduling issues: bit insertions
and deletions render the image unreadable. Even a few bit
insertions or deletions that would yield a low edit distance can
create an entirely illegible image. Figure 8b is obtained after
dealing with synchronization issues, but prior to applying RS
codes: with a bit error rate of 0.72%, the image is readable but
noisy. Finally, Figure 8c shows the result after applying error
correction: we obtain a crystal clear, error-free image.

We also analyzed how the size of the error-correcting code
influences the raw channel capacity and the number of errors.
We performed the experiments on a Xeon E3-1220v3, in a
virtualized environment with the KVM hypervisor. Table V
shows that increasing the percentage of error-correcting code
slows down the connection if too much error correction is
applied and increases the number of corrected errors due
to the slightly increased length. We can see that at 2%
error correcting a few errors are introduced. During all the
experiments the average amount of errors per packet stayed
the same: 22 RS-words per RS-message were erroneous, which
is correctable by 2% error-correcting code. However, due to
errors of up to above 40 in one message the 2% are not enough.
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B. Cloud Environment

For our experiments in a cloud environment, we used three
instances on Amazon EC2 as described in Section III-E. As
our covert channel operates across cores but not across CPUs,
we use the jamming agreement to find the two instances that
reside on the same CPU. In the remainder, the sender runs
on one instance, and the receiver on the other instance, and
communication is performed across virtual machines. Table IV
contains the results for the communication in terms of speed,
error rate and number of errors corrected.

Without any additional noise, our covert channel achieves
a bit rate of 45.25 KBps with an error rate of 0%. We then
varied the noise on the sender and receiver virtual machines,
as well as on the third instance. Unless stated otherwise, noise
is started before the jamming agreement. The communication
stays error-free with 45.09 KBps when running a web server
on the sender virtual machine. It still stays error-free with
extreme synthetic noise generated by the stress tool in a
single virtual machine, with a bit rate going from 42.26 KBps
to 44.64 KBps. Likewise, with a mix of synthetic noise and
web server running on all three virtual machines, we obtain a
bit rate of 37.42 KBps with 0% error rate. Our most extreme
case, running stress -m 8 on the third virtual machine,
breaks the jamming agreement, but not the transmission itself
that is 34.27 KBps with 0% error rate when the noise starts
after the jamming agreement.

Table IV also shows the relation between the errors cor-
rected by the RS codes and the bit rate. We see that the
number of corrected errors decreases with the bit rate, and
when noise increases. With more noise, the Berger codes at
the physical layer are able to detect more errors, which causes
more retransmissions, leading to fewer errors which need to
be corrected by RS codes.

C. Comparison with State of the Art

The fastest cache covert channels in the literature are
the ones relying on shared memory such as Flush+Reload
with 298 KBps and 0.00% error rate and Flush+Flush with
496 KBps and 0.84% error rate [12]. These implementations,
while yielding a low error rate thanks to a retransmission
protocol, have not been tested in a noisy environment, and
require shared memory that is not available in most cloud
environments, such as Amazon EC2.

Prime+Probe covert channels achieve between 67 KBps
with 0.36% error rate [12] and 75KBps with 1% error



(a) Image distortion caused by insertion (b) Noisy image after handling insertion (c) The image after applying error correc-

and deletion errors due to scheduling. and deletion errors.

tion. It is equivalent to the original image.

Fig. 8: The stages of error correction.

rate [21]. Similarly, Pessl et al. [27] demonstrated a covert
channel based on DRAM addressing that is up to 307 KBps
with 1.8% error rate in native environment and 51 KBps with
4.1% error rate in virtualized environment. Compared to cache-
based covert channels, this one has the advantage of working
across CPUs, but its lack of synchronization mechanism at
the protocol level causes a dramatic loss in performance in
virtualized environments. However, these covert channels have
neither been tested in a noisy environment nor in a real-world
scenario such as Amazon EC2. By first optimizing our covert
channel for speed, and then applying a protocol to deal with
synchronization issues and cache activity, we demonstrate that
we can obtain the same order of magnitude in speed as state-
of-the-art covert channels. Moreover, in contrast to previous
work, our covert channel is able to stay error-free and fast in
the presence of extraordinary high system activity and has been
evaluated between two virtual machines on Amazon EC2.

Previous work by Wu et al. [40] demonstrated a covert
channel exploiting the memory bus on Amazon EC2 between
two instances of 100bps, i.e., 0.01 KBps, with 0.75% error
rate. In addition to being error-free, our covert channel thus
outperforms previous covert channels demonstrated on Ama-
zon EC2 by 3 orders of magnitude.

VII. SSH OVER CACHE COVERT CHANNEL

We demonstrated that our covert channel is robust against
noise while still yielding good performance. This section gives
a practical application of the covert channel that exploits both
the speed and the error-free transmission: SSH and Telnet
connections between two instances in the cloud.

A. Implementing TCP over Covert Channel

Current state-of-the-art covert channels cannot be used as
an underlying layer for high-level protocols. Indeed, high-level
protocols expect the physical layer to transmit the data without
errors. Depending on the high-level protocol, corrupted bits can
be repaired using error correction or retransmission. However,
inserted or deleted bits corrupt the data stream and cannot be
repaired by high-level protocols.

In the OSI model, which is typically used to model network
layers, the data-link layer provides a mostly error-free data
transmission for the higher communication layers. As our
covert channel is error-free, i.e., sent packets are always
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correct, we can implement higher level protocols using our
covert channel as data-link layer. We decided on the ubiquitous
Transmission Control Protocol (TCP) as the transport protocol.
Being a core protocol of the Internet protocol suite, many
applications rely on it. Supporting this protocol over a covert
channel opens the field for practical applications, such as
remote connections with SSH or Telnet.

So far, the communication over our covert channel is
unidirectional. TCP requires a bidirectional data transmission
on the data-link layer. A straightforward solution would be
to run one covert channel per direction. However, this is not
a viable option as an additional instance increases the noise
drastically. Instead, we implement a half-duplex system. In
this setting, one channel is used to transmit data alternately
in both directions, i.e., data cannot be sent in both directions
simultaneously. These transmission details are transparent to
TCP and have to be handled in the lower layers to be
compatible with existing applications. To ensure practical use,
arbitrary applications must be able to communicate via TCP
over the covert channel without adaption.

Our solution is to provide local TCP sockets as covert
channel endpoints. The client application initiates the commu-
nication by connecting to the client endpoint socket, just as it
would connect to the target application. The client endpoint
communicates with the server endpoint through the covert
channel. The server endpoint connects itself to the server
application. The endpoints buffer TCP packets for transmission
while receiving data from the covert channel. The received
data is directly sent to the connected application through the
local TCP sockets. When the covert channel has sent all
buffered data, it switches the transmission direction. Additional
switches can be introduced at the cost of transmission rates to
allow a more responsive connection.

Figure 9 illustrates the communication between the client
and the server application. Due to the transparent TCP socket
endpoints, the applications do not see a difference to being
connected directly through a socket. One limitation of this
method is that we cannot have multiple sockets simultaneously
as the simple communication endpoint design does not support
packet switching. However, for most applications it is sufficient
to have one socket for communication. Especially remote
shells, which are the most likely use case, do not require more
than one socket connection.
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Fig. 9: TCP tunneling over the covert channel.

B. Evaluation of SSH Connections

As a practical proof-of-concept, we used an SSH client
and server as application. We chose SSH as it is a well-known
protocol for secure network services and remote login [45].
The protocol is also a good evaluation criterion for the covert
channel’s robustness and freedom from errors. Due to the cryp-
tographic nature of the protocol, the connection is terminated
as soon as there is a corrupted package, therefore our covert
channel succeeds where previous work would fail.

We established an SSH connection over the covert channel
in a native environment first. To evaluate the connection’s
stability, we executed common tasks, such as viewing files
using cat or running more sophisticated programs such as
top. For a more realistic scenario, we increased the level of
noise on the computer. As a source of noise, we used Chrome
to watch a music video on YouTube. Even in the presence of
noise the SSH connection was stable and remained usable.

To evaluate a more realistic use case, we established
the SSH connection between two co-located Amazon EC2
instances. To evaluate the practicability of the connection,
we tried four common tasks: listing the files in the current
directory (1s), viewing a text file (cat /etc/passwd),
displaying the CPU utilization (t op) and creating a file using
nano. Without the presence of noise, the SSH connection
remained stable over the whole time. We steadily increased the
noise level by running an Apache2 web server on a third virtual
machine, on the SSH server side and finally on all three virtual
machines. Even the simulation of heavy noise on the third
virtual machine using stress -m 8 did not interrupt the
SSH connection. Table VI summarizes the experiments. The
delay between user input on the client side and the processing
of the input on the server side is influenced on how frequent
sender and receiver switch roles and can be configured to be in
the range of milliseconds. The influence of noise on the input
latency is barely perceivable.

C. Evaluation of Telnet Connections

Only after we started to generate artificial noise on the
SSH server’s virtual machine by running stress -m 1,
we observed occasional disconnects due to corrupt packets
or timeouts. In this scenario, we could still achieve a stable
connection using Telnet instead of SSH. As Telnet is an
unencrypted text-oriented protocol without authentication [28],
there are fewer packets transmitted and the packets are not
error-checked. Telnet allows stable communication even while
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TABLE VI: Stability of SSH connection over the covert
channel in the presence of noise, between two instances on
Amazon EC2.

Noise Connection

No noise

stress -m 8 on third VM
Web server on third VM

Web server on SSH server VM
Web server on all VMs

stress -m 1 on server side unstable

TABLE VII: Stability of Telnet connection over the covert
channel in the presence of noise, between two instances on
Amazon EC2.

Noise Connection

No noise

stress -m 8 on third VM
Web server on third VM

Web server on SSH server VM
stress -m 1 on server side

running stress -m 1 with occasional corrupted bytes. Ta-
ble VII summarizes the experiments. Note that system mod-
ifications should not be executed over this connection as a
random corruption of bytes might have devastating effects.

VIII. CONCLUSION

Caches are an ideal shared resource to establish covert
channels between multiple virtual machines to exfiltrate sen-
sitive data, as they are fast and shared by all tenants in public
clouds. However, cache covert channels are prone to noise
due to cache activity and scheduling, impairing their direct
applicability in a real-world public cloud scenario.

In this paper we characterized the sources of noise and
errors in cache covert channels comprehensively. We conse-
quently designed a protocol that handles the physical layer
and the data-link layer of a cache covert channel. We evaluated
the performance of our covert channel in different scenarios
in native and virtualized environments. Even in the presence
of extraordinarily high system activity, we can maintain a
transmission rate between 34.27 KBps and 45.09 KBps with an
error rate of 0% on Amazon EC2 virtual machines, which is
three orders of magnitude higher than previous covert channels
on Amazon EC2. Based on this error-free covert channel, we
built the first implementation of TCP through a cache covert
channel. We verified the practical applicability of our error-
free TCP connection by tunneling SSH and telnet connections
reliably between two colocated Amazon EC2 virtual machines.

The possibility to establish reliable SSH connections and
telnet sessions through the cache, moves cache covert channels
beyond typical academic use cases, emphasizing the crucial
importance of finding effective countermeasures.
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