
1

Branch Prediction Attack on Blinded Scalar
Multiplication

Sarani Bhattacharya, Clémentine Maurice, Shivam Bhasin and Debdeep Mukhopadhyay

Abstract—In recent years, performance counters have been used as a side channel source to monitor branch mispredictions, in order
to attack cryptographic algorithms. However, the literature considers blinding techniques as effective countermeasures against such
attacks. In this work, we present the first template attack on the branch predictor. We target blinded scalar multiplications with a
side-channel attack that uses branch misprediction traces. Since an accurate model of the branch predictor is a crucial element of our
attack, we first reverse-engineer the branch predictor. Our attack proceeds with a first online acquisition step, followed by an offline
template attack with a template building phase and a template matching phase. During the template matching phase, we use a strategy
we call Deduce & Remove, to first infer the candidate values from templates based on a model of the branch predictor, and
subsequently eliminate erroneous observations. This last step uses the properties of the target blinding technique to remove wrong
guesses and thus naturally provides error correction in key retrieval. In the later part of the paper, we demonstrate a template attack on
Curve1174 where the double-and-add always algorithm implementation is free from conditional branching on the secret scalar. In that
case, we target the data-dependent branching based on the modular reduction operations of long integer multiplications. Such
implementations still exist in open source software and can be vulnerable, even if top level safeguards like blinding are used. We
provide experimental results on scalar splitting, scalar randomization, and point blinding to show that the secret scalar can be correctly
recovered with high confidence. Finally, we conclude with recommendations on countermeasures to thwart such attacks.

Index Terms—Branch Prediction Unit, Scalar Multiplication, Scalar Splitting, Scalar Randomization, Point Blinding

F

1 INTRODUCTION

Micro-architectural side-channel attacks have gained impor-
tance manifold in the last decade [1]. These attacks target in-
formation leakage with respect to micro-architectural com-
ponents such as the cache or the branch predictor. Crypto-
graphic algorithms, in spite of being mathematically strong,
can leak secret keys through micro-architectural events since
their implementations leave execution footprints on the
shared system resources.

Public-key cryptographic algorithms are indispensable
in daily life due to authentication, key exchange, and digital
signatures, which are required in almost every application
we use while connecting to the Internet. In his pioneering
work, Kocher [2] showed that the time to process different
inputs can be used as a side-channel information to find the
exponent bits of the secret keys for RSA, Diffie-Hellman,
Digital Signature Standard (DSS) etc. Bhattacharya and
Mukhopadhyay [3] first established that branch misses from
Hardware Performance Counters (HPCs) can reveal the
secret key in RSA. While there have been several proposed
countermeasures to prevent Simple Power Analysis (SPA),
there exist more powerful attacks such as Differential Power
Analysis (DPA), proving simple side-channel countermea-
sures to be ineffective. In particular, while the authors [3]
targeted SPA countermeasures, their attack is ineffective
on countermeasures blinding the secret. The paper in [3]
targets unblinded implementation of RSA and uses the
branch misprediction values from perf over various inputs

• S. Bhattacharya is with COSIC, KU Leuven
• D. Mukhopadhyay is with SEAL, IIT Kharagpur, India
• C. Maurice is with Univ Rennes, CNRS, IRISA, France.
• S. Bhasin is with Temasek Laboratories, NTU, Singapore.

to construct an efficient Difference of Mean (DoM) based
approach to identify the secret bits one after another. We
target a difficult version of the problem in this paper, by
focusing on the blinded implementations of different ECC
algorithms because the blinded scalar multiplications (or
exponentiation in case of RSA) are more commonly used
in practice compared to unblinded operations. The Differ-
ence of Mean analysis based on the secret bits of the RSA
exponents cannot be equivalently adapted for the blinded
scalar multiplication with the aggregate branch mispredic-
tion values as described in [3].

The most popular countermeasures against DPA in El-
liptic Curve Cryptography (ECC) have been proposed by
Coron [4] and Clavier and Joye [5], namely scalar split-
ting, scalar randomization, and point blinding. All of these
blinding countermeasures either randomize the secret scalar
or the base point of the curve. They were considered to
be effective countermeasures against HPCs side-channel
attacks [3]. Such countermeasures may be observed in con-
junction with many open source libraries like RELIC [6]
which are used for development of cryptographic software
and are promoted via corresponding literature [7].

Contributions

In this paper, we target all of these countermeasures, there-
fore tackling the harder problem of attacking DPA secure
implementations. To the best of our knowledge, we show
for the first time that all of these popular countermeasures
are ineffective to thwart such attacks, contrary to what was
previously believed. Our attack proceeds with the following
steps: (1) an online acquisition phase, and (2) an offline
template attack.

2

The online acquisition phase provides the branch mispre-
diction trace over the scalar multiplication. This trace is
obtained with HPCs recording branch misprediction events,
using the perf_event_open system call in sampling mode
to monitor the executable under attack. This system call is
part of the Linux kernel and accessible via ioctl. Contrary to
previous work [3], which used HPCs in counting mode thus
providing the aggregate number of occurring events, we use
the sampling mode. The sampling mode provides periodic
measurements with respect to another sampler event (e.g.,
instruction count). However, the obtained samples have a
non-uniform noise, mostly because the measurements are
asynchronous in nature, and the sampling period is not a
fixed time period. The algorithm being randomized, adds to
the difficulty of attacking with such measurements.

The offline template attack retrieves the secret key. The
template attack is composed of a template building phase,
followed by a template matching phase. During the tem-
plate matching phase, we perform a Deduce step to derive
the values of an unknown set of keys based on the observed
performance events, and a Remove step to eliminate observa-
tions that have low confidence or erroneous by introducing
extra checks. An erroneous deduction may affect subsequent
key recovery, therefore the Remove step, as well as an accu-
rate model of the branch predictor, are of crucial importance.

The key contributions of this work are:

1) We perform a reverse engineering of the branch pre-
dictor hardware and show that its behavior can be
modeled by a 3-bit saturating counter state machine.

2) We propose a new method to perform side-channel
attacks using the Branch Prediction Unit (BPU), by
building traces of branch mispredictions of any exe-
cutable. Contrary to prior works, to build such traces
we use HPCs in sampling mode.

3) We use these branch misprediction traces to construct
the first template attack on the branch predictor. Our
adaptive template matching can be demonstrated on
any secret-dependent conditional branching algorithm
and is able to retrieve the secret scalar, including in
presence of differential attack countermeasures.

4) We also demonstrate this attack on Curve1174 and
Curve25519, implemented using the double-and-add
always algorithm where the control flow of execution
does not directly depend on secret bits.

Further we extend our attack to the open source imple-
mentations of Curve25519 and Curve1174 in RELIC. The
attack strives on template matching algorithm which de-
duces the random scalar bits by using the constructed traces
in a single match. The Remove algorithm is dependent on
the countermeasure under consideration and can efficiently
detect if a particular retrieval was wrong. Thus if the Deduce
step fails, then the template matching must have returned
wrong candidates for the current bit retrieval in majority
of cases. This affects the retrieval of next bits as we need
to increase the number of samples for a successful attack.
In this paper, we present our experiments based on the
commercially available Intel CPUs.

2 BACKGROUND

2.1 Branch Predictors and Branch Mispredictions
Commonly, the implementations of public-key exponenti-
ation algorithms and the scalar multiplications algorithms
in ECC contain a conditional block, where the branches
are conditionally dependent on secret key bits. This is the
case in the double-and-add algorithm or the SPA resistant
Montgomery Ladder algorithm. Let the n-bit secret scalar
in ECC be denoted as (k0, k1, · · · , ki, · · · , kn−1). The trace
of taken and not-taken branches depending on scalar bits is
expressed as (b0, b1, · · · , bn−1).
• If kj = 1, then the conditional addition statement in the

double-and-add algorithm gets executed. The branch is
not-taken, i.e., bj = 0.

• If kj = 0, then the addition operation is skipped and the
execution continues with the next squaring statement.
The branch is taken, i.e., bj = 1.

In order to avoid pipeline stalls, the predictor predicts
whether the next branch is taken or not, based on the history
of branches that have already been encountered. Predicted
instructions are then fetched in the instruction pipeline.
The condition is only evaluated during the “execute” stage.
In the case of a mismatch between the predicted and the
evaluated branch, the corresponding instruction is flushed
from the instruction pipeline resulting in a pipeline stall.
This is called a branch misprediction, or a branch miss.

2.2 Existing DPA Countermeasures on ECC
Elliptic curve scalar multiplication or point multiplication
is an operation which computes Q = KP , with K an n
bit scalar and P a point on an elliptic curve. The ECC
scalar multiplication algorithms operate for each bit of
the scalar and the branching decision depends on the bit
value of the scalar. Although scalar multiplications can be
written without secret-dependent blocks, many open-source
codes still use them. We came across 5 popular libraries
namely: OpenSSL [8], libgcrypt [9], Bouncy Castle [10],
mbedTLS [11], RELIC [6] which uses conditional structures
in their codes. Some of these libraries have been already
shown vulnerable by various attacks on the conditional
structure of the codes [1], [2], [3], [12], [13]. Though the
revised version of some of these libraries are sanitized with
the recent developments of micro-architectural attacks, there
are still inherent data-dependent conditional blocks of codes
which eventually depends on the cryptographic secret.

Moreover, it is believed that BPU-based attacks can be
thwarted by DPA protections even with secret-dependent code.
The countermeasures are scalar splitting, scalar randomiza-
tion, point blinding and randomized projective coordinates.

Scalar Splitting
Clavier and Joye [5] proposed, instead of computing KP , to
split the scalar in two parts K = (K− r)+ r with a random
r. Multiplication is then computed on the split components
separately, i.e., KP = (K − r)P + rP .

Scalar Randomization
Coron [4] proposed randomization of the scalar such that
for K the secret scalar and P ∈ E base point, instead of

3

computingKP , we randomizeK asK ′ = K+r×#E, with
r a random integer and #E the number of points in the
curve. The countermeasure computes K ′P which returns
the same value as KP since #E.P = O.

Point Blinding
Coron [4] proposed point blinding, i.e., to compute K(P +
R) instead of KP , where R is a secret-random point. KR
can be stored in the system beforehand, which when sub-
tracted K(P +R)−KR gives back KP .

Randomized Projective Coordinate
This countermeasure proposed by Coron [4] involves a
randomization of the projective coordinate representation
P (X,Y, Z) of point P (x, y) by a randomly selected λ in the
finite field. The transformation P (X,Y, Z) to P (λ·X,λ·Y, λ·
Z) can be applied once for the entire scalar multiplication or
alternatively after each individual addition doubling steps.

3 REVERSE-ENGINEERING BRANCH PREDICTORS

In order to exploit the state of the branch predictor, we need
an accurate model of it. However, the hardware design of
this proprietary component is often undocumented. Previ-
ous work [3] assumed that the predictor is a 2-bit saturating
counter. In this section, we seek to evaluate how well this
model corresponds to the actual branch predictor. We focus
on Intel CPUs and provide a detailed comparison among
various micro-architectures.

3.1 Reverse-Engineering Method
Branch predictors are complex structures comprising tables
associated with different history lengths. As we are focused
on attacks on cryptographic algorithms which usually target
a single branch, we do not seek to reverse-engineer these
components, but rather the prediction method. We thus
assume that the component structure has a negligible impact
on our attack.

We model the predictor as a state machine. The different
states map to either a “branch taken” or “branch not taken”
prediction for the next branch. The state machine is updated
with each new branch, the input being either “branch taken”
or ”branch not taken”. As an illustration, a 2-bit saturating
counter has four states: “strongly not taken”, “weakly not
taken”, “weakly taken” and “strongly taken”, where the first
two states map to a “branch not taken” prediction and the
last two a “branch taken” prediction for the next branch.

To reverse-engineer the predictor, we use the HPCs to
observe the mispredictions encountered by the BPU for
each branch of a known sequence of branches. As the
perf_event_open system call allows us to filter the hard-
ware events by process, we are able to obtain a noise-free
sequence of correct predictions and mispredictions, for each
branch of a sequence. Note that the results of this phase
depend on the micro-architecture we tested. For Broadwell,
we are able to get traces of 0s and 1s (i.e., 0 or 1 mispredic-
tion occurred). However, for older micro-architectures, we
obtained traces largely consisting of 2s and 3s. To remove
the noise and to match these traces to the ones obtained
either for Broadwell or state machine models, we subtracted
2 to all measurements, thus obtaining 0s and 1s again.

Broadwell

Haswell

Sandy Bridge

Nehalem 0.88

0.75

0.75

0.74

0.73

0.98

0.92

0.9

2-bit
3-bit

Fig. 1: Model accuracy on average for the 2-bit and 3-bit sat-
urating counter state machines, for four micro-architectures.

In order to approximate the state machine that corre-
sponds to the actual branch predictor, we first choose se-
quences of branches that have specific patterns (e.g., always
taken, always not taken, and pattern repetitions). We start by
forcing the predictor to be in a known initial state. We do so
by executing branches with the same outcome, either taken
or not taken, a large number of times. When the predictor is
in a known state, we observe the number of branches with
the opposite outcome to be executed to change the output of
the predictor. For example, in the case of a 2-bit saturating
counter, if the state machine is in the “strongly not taken”
state, it takes two taken branches to reach a prediction of
“branch taken”.

By scrutinizing several sequences of branches, we ob-
serve that a 2-bit saturating counter does not seem to
model well the actual branch predictor for recent micro-
architectures. Rather, we observe that a 3-bit saturating
counter seems to be a better model.

3.2 Evaluation

The evaluation of the reverse-engineering has been per-
formed on the following setups: Intel Core i3-350M (Ne-
halem), Intel Core i3-2350M (Sandy Bridge), Intel Core i5-
4210U (Haswell), Intel Core i5-5200U (Broadwell).

We now evaluate the accuracy of the different state ma-
chines (2-bit saturating counter and 3-bit saturating counter)
to model the branch predictor of recent micro-architectures
of Intel CPUs. We evaluate the accuracy by comparing
sequences of mispredictions between one model and the
actual mispredictions encountered by the branch predictor.
We do not only seek to evaluate that the number of mispre-
dictions is the same for each sequence, but rather that each
misprediction encountered by the branch predictor is also
encountered by the state machine. In other words, a perfect
model gives the exact same sequence of mispredictions as
the branch predictor, for any given sequence of branches.
We evaluate the accuracy of each state machine with 10 000
sequences of 1 024 branches each. The sequence of branches
is chosen randomly.

Figure 1 shows the accuracy of each state machine,
for the four different micro-architectures in our setup.
Two different trends appear. First, while a 2-bit saturating
counter state machine is the best model for the Nehalem
micro-architecture with 88% accuracy, this is not the case
anymore from Sandy Bridge, where the accuracy of a 2-
bit saturating counter drops to 75% accuracy, and a 3-bit
saturating counter is a better model. Second, for the Sandy
Bridge micro-architecture, we observe that a 3-bit saturating

4

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of mismatches

C
um

ul
at

iv
e

pe
rc

en
ta

ge
of

se
qu

en
ce

s Nehalem
Sandy Bridge
Haswell
Broadwell

(a) Predictor model: 2-bit saturating counter state machine.

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of mismatches

C
um

ul
at

iv
e

pe
rc

en
ta

ge
of

se
qu

en
ce

s Nehalem
Sandy Bridge
Haswell
Broadwell

(b) Predictor model: 3-bit saturating counter state machine.

Fig. 2: Empirical cumulative distribution functions, illus-
trating mismatches between mispredictions as predicted by
one model, and actual mispredictions encountered by the
branch predictor, for two predictor models and four micro-
architectures. The sooner a plot reaches 100%, the better
the model.

counter is a very close match, with 98% accuracy. The
accuracy decreases a bit for the following generations (92%
for Haswell, 90% for Broadwell), suggesting that the branch
predictor has become a bit more complex.

These trends are also represented in Figures 2(a) and
2(b), where empirical cumulative distribution functions de-
pict mismatches between mispredictions as predicted by
one model, and actual mispredictions encountered by the
branch predictor. With this representation, the sooner a plot
reaches 100%, the better the model. For example from Fig-
ure 2, Sandy Bridge micro-architecture has less than 10% of
mismatches between the predictor and the 3-bit saturating
counter model for all sequences, whereas no sequence has
less than 10% of mismatches between the predictor and the
2-bit saturating counter model, and only 1% of sequences
have less than 20% of mismatches between the predictor
and the 2-bit saturating counter. So the mismatch for a 2-bit
predictor is more in case of Sandy Bridge compared to 3-bit
predictor. In the remainder, we use 3-bit saturated counter as
a model for the branch predictor in our side-channel attacks,
since our attacks are performed on recent CPUs.

4 ATTACK OVERVIEW

In this section, we develop a general attack method that:
(1) acquires HPC samples over the period of execution in
an online phase, and (2) retrieves the secret using statistical
techniques such as template building and template match-
ing in an offline phase.

4.1 Threat Model

We target environments where hardware is typically shared
between multiple users processes. This attack assumes that
the adversary has the privilege to monitor HPCs, as HPCs
have a restricted access since Linux 4.6. A legitimate user
of a shared server system could be able to read the HPC
misses of a similar user on the same server which she picks
as her target. The hardware being shared, the mispredictions
from one execution has an effect on the concurrent running
process as well. In such a setting, the branch misprediction
event counts can thus be observed over a target execution
by HPCs. The attacker can achieve higher accuracy if he
can pre-condition the branch predictor to a known state.
However, as shown later, this is not a necessary requirement
and attacks remains practical even without conditioning.

On the other hand, there are HPC enabled embedded
devices which still allow access to HPCs from user level.
Moreover, we emphasize the fact that the blinded imple-
mentations are not yet secure, unlike the general under-
standing of blinding. Alternative side-channel information
like timing penalty for mispredictions could be used in place
of HPCs. We believe that investigating information leakage
due to HPCs is of crucial importance, as they provide very
fine-grained information and fixing these attacks gives a
better security margin.

The attack in its current form is not directly applicable
across VMs because HPCs are obscured in this setup. In-
deed, only a few software based performance events are
allowed to be observed in a virtual environment setup using
perf. However, mispredictions can be observed through
other side channels such as timing [14]. The attack thus can
be modified to a cross-VM scenario, with the same attack
method but a different measurement procedure.

4.2 Practicality of our attack in SGX framework

Our attack is realistic in a SGX enclave running in hardware
debug mode. As running an application in release mode
on Intel SGX requires a commercial license agreement, this
is out of scope of the paper. The implementation is such
that there are two processes: (1) a victim process running
in an enclave and (2) a spy process that observes the
performance counter values through ioctl system calls from
another enclave running in parallel to the victim enclave
on the same processor core. The spy process measures the
branch misprediction values across a dummy code snippet
periodically using ioctl system calls in two different sce-
narios. First, the spy runs in the enclave along with all the
background processes. The Gaussian distribution in Figure 3
in red shows the branch misprediction values as observed
from HPCs for the dummy code snippet running in the
spy enclave. Second, the Edward curve code (submitted
version) gets executed as a victim process in another enclave
which runs concurrently to the spy enclave (in blue in
Figure 3). The HPC event counts for both the Gaussian
distributions are observed from the spy enclave across the
same dummy code snippet. This establishes the fact that
the effect of branch misses can indeed be observed across
enclaves, where a secret execution in an enclave has an
effect on the performance counter values observed over a

5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 262000 262200 262400 262600 262800 263000 263200 263400 263600

F
re

q
u
e
n
c
y
 o

f
O

c
c
u
ra

n
c
e

Perf HW Branch Misses

Observation of bmiss from an enclave
Observed bmisses in presence of victim enclave

Fig. 3: Experiments from Intel SGX.

concurrent enclave. This makes our attack scenario realistic
in the SGX framework.

4.3 Profiling Branch Mispredictions

To reverse-engineer the branch predictor, we performed
synchronous measurements of branch misses over each iter-
ation of the conditional block. However, such measurements
may not be feasible for an attacker, as it would suppose to
modify the executable run by the victim to insert measure-
ments. Instead, we use the sampling mode of perf event
counter values [15] to perform our attacks, without any
modification of the victim program.

The perf object is instantiated with an event that is used
as a sampler. For example, if the instruction count
event is used as the sampling event, an interrupt is issued
when the counter exceeds the value of the sample period
parameter. We measure the branch miss event counter on
each such interrupt. This provides perf handler to monitor
with a fine granularity any cryptographic module running
in the system sampled at a particular frequency of exe-
cution. The branch misprediction samples by the handler
are asynchronously observed over the cryptographic mod-
ule and there exists no direct communication between these
two modules. This essentially means that the perf handler
records the branch misprediction samples, but the samples
being asynchronous in nature, it lack the trigger signals
and make one-one correspondence more difficult with the
concurrently running cryptographic module.

However, the counter values read by the interrupt han-
dler for a very small sample period can be noisy, due
to the overhead of the interrupt getting generated very
frequently. The optimal sample period can be decided on
the target machine, by testing with some dummy process. In
our experiment platform (which we detail later), we found
that the sampling becomes too noisy if we sample with a
sampling period that is less than 50 instructions. This is
typically because, if the sampling period is as low as say
100, after every 100 instructions, interrupts would be issued
from the signal handler and read the count of another event,
which introduces noise [15].

In our attack, we call the encryption process from the
same script which instantiates the perf handler as in Fig-
ure 4a, however there is no direct communication between
the two. A more optimistic scenario would be when the perf
handler and the target cipher are run from two different
scripts as we show in Figure 4b. As both the codes are

running on the same processor core sharing the BPU, we ob-
served that the distributions generated by the perf values in-
deed leak information. Figure 5 shows the result for the exe-
cution of such a scenario where the target Curve1174 scalar
multiplication is repeatedly invoked and perf-statistics are
noted using the perf handler. From Figure 5, it is evident that
just by looking at the bunch of high sample points along the
time scale one could distinguish the trace points that are
getting affected by the execution of Curve1174.

In order to compare the traces obtained from two differ-
ent scenarios we plot them such that they are aligned in the
timeline with comparable sample periods. It is evident from
Figure 6a that there is a similar pattern between the traces
generated when the handler and the cipher are triggered by
the same script versus two separate scripts. To highlight the
similarity in the samples along the timeline, we compute the
Pearson’s correlation in windowed fashion (taking window
of 5 trace points without loss of generality) and the windows
which showed correlation higher than 0.8 (supposedly to be
highly correlating) is plotted in Figure 6b. The sample traces
as observed in Figure 6a have a high similarity if monitored
intricately. Confirmatively, to measure the relative closeness
of the two samples along time scale, the Bhattacharyya co-
efficient gives an approximate measurement of the overlap
between two statistical samples. This coefficient is a popular
choice in statistics theory for this particular problem. We
measured that there is a correlation of around 0.78 (in the
range [0, 1]) for the traces from two scenarios. Both Pearson
and Bhattacharya coefficient metrics show that both traces
are equally capable of launching a chosen attack based on
the observed statistics. However, in the subsequent attack
demonstration we refer to the scenario in Figure 4a, as
here the noise level is lesser while the perf handler does
not explicitly control the target cipher thus maintaining the
practicality of the attack.

4.4 Template Attack on the Branch Predictor

We propose a strategy we call Deduce & Remove to target the
scalar splitting and scalar randomization countermeasures,
which randomize the scalar multiplications. In most recent
cryptographic libraries, the underlying scalar multiplication
algorithm is balanced and the scalar is blinded using a
newly generated random value every time.

We assume a balanced ECC algorithm where the con-
ditional execution is dependent on the n-bit scalar K . We
consider m branch miss samples from the execution over K .
Each branch miss sample is reported after a sample period
of I instructions. Effectively, each sample of reported branch
miss is affected by sample period I number of instructions
thus, I is inversely proportional to m the number of re-
ported branch miss samples.

In this paper, first we target the secret-dependent bal-
anced conditional branching statements, which suffers from
branch misprediction if the actual control sequence based
on the secret scalar bit. In such cases, we choose I suitably
such that n/m = 2. Moreover, considering a b-bit predictor,
I is advised to be chosen such that n/m ≤ b (b = 3 in our
case).

Second, we target the “double-and-add always” algo-
rithm which does not have any conditional branching based

6

(a) Scenario using perf sampler in asynchronous sampling
mode.

(b) Using perf sampler in asynchronous sampling mode
from two different scripts.

Fig. 4: Perf handler execution scenarios.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50000 100000 150000 200000 250000 300000 350000

H
W

 B
ra

n
c
h
 M

is
s
e
s

Timestamps

From a concurrent process

Fig. 5: Determining the perf samples corresponding to
Curve1174 scalar multiplication in asynchronous sampling
mode from a concurrent process

on the secret scalar. As shown later by supported exper-
iments, such implementations often have data-dependent
conditional modular reductions in the underlying field op-
erations which can also be targeted for a successful attack.
In such case, we choose I such that m/n > 1, and the
template building and matching algorithms work efficiently
for larger m/n values. In the following sections, we propose
a generic methodology of template building and matching
to collectively recover successive bits.

Offline Template Building for Each State of the Predictor
We propose the template building phase with the context of
states of a generic b-bit predictor. A b-bit predictor has 2b

states, and each of them refers to a particular sequence of
the last taken and not-taken branches. If we encode taken
branches as 1 and not-taken branches as 0, then each state
represents the history of the last consecutive branches. A
given sequence of taken and not-taken branches may exhibit
a different number of mispredictions, depending on the
state of the predictor at the start of the sequence. Thus the
start state of the predictor could be crucial while modeling
the simulated behavior of the branch mispredictions for
construction of correct templates. As the nature of branch
misprediction for the same sequence is different for different
start states, this motivates us to build templates for the
same set of input sequences for each of 2b states of the b-
bit predictor.

Branch miss templates from scalar multiplication over
t bits (t << n) are constructed in sampling mode. Each
of the 2t combination of bits are considered as templates
and each of these traces contain t × m/n sample points.
The template building phase is elaborated further in the
following sections. At the end of the template building stage
for each of start states of b- bit predictor, we obtain 2b set
of templates, each having 2t templates of t × m/n sample
points.

Offline Template Matching for an Unknown Trace
The template building phase is followed by a matching
phase, where the sample trace collected for an unknown
secret scalar is matched iteratively to the previously con-
structed templates. The matching phase is composed of
the Deduce and Remove steps. In the Deduce step, we start
matching from the Least Significant Bit (LSB) of the scalar
multiplication. The matching can be done iteratively taking
on a trace with s sample points (s = t × m/n). These s
samples are point-wise matched with all the template points
for each particular template and the distances for each of the
traces are measured using the least squares method. A set of
templates having the least square distance to the unknown
template is considered as the retrieved t bits of the unknown
scalar. In a noise-free setting, a single trace matching should
be sufficient to determine t-bit scalar. However, in a real
setting where noise is predominant, several templates might
return the same least square distance. Noise filtering is
done in the Remove step. However, we noticed that the
Remove step is device-specific and can also change with the
algorithm. The template building and matching steps are
further elaborated in Section 8.

At the end of the Deduce and Remove steps, the retrieved
t bits decide the intermediate state of the branch predictor
hardware. With the current t bits, the rest of the scalar is
determined with the same procedure iteratively, extracting
t bits at a time.

5 ATTACKING BLINDING COUNTERMEASURES

In this section, we target three blinding countermeasures:
scalar splitting, scalar randomization, and point blinding.

7

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

H
W

 B
ra

n
c
h
 M

is
s
e
s

Timestamps

From same script
Separate script

(a) Similarity in the perf samples corresponding to Curve1174 scalar
multiplication in two different scenarios.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
a
rs

o
n
 C

o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t

Timestamps

windowed Pearsons Correlation

(b) Windowed Pearson correlation in two sample traces observed
in two different scenarios

Fig. 6: Perf handler observations and their correlation in two different scenarios.

5.1 Attacking Scalar Splitting

The idea of scalar splitting as a DPA countermeasure for
scalar multiplication appears in [5], [16]. Clavier and Joye [5]
proposed a method to randomize the scalar K such that
instead of computing KP , we compute (K − r)P + rP
where random r changes on every run. In this paper, we
show that such secure implementation is still vulnerable
to branch misprediction analysis. SPA resistant balanced
scalar multiplications are computed on each of the splits
separately. The SPA resistant scalar multiplication on split
shares together result in DPA resistant algorithm.

The attack progresses from LSB to MSB. We now it-
eratively recover the bits of the secret scalar K , starting
from LSB. We construct templates composed of trace pairs
corresponding to all possible values of (K − r)P and rP .
The attack works in three major steps:

1) Acquire N pairs of traces corresponding to split scalar
multiplications on K − r and r over t bits, each pair for
unknown and random values of r.

2) Deduce: For each of theN pairs, corresponding pairwise
template matching is performed, on each sample. It
results in N values each for K − r and r. Pairwise
adding up of each pair (K−r+r) results in t-bits of K .

3) Remove: Ideally, all N values of K obtained previously
must be identical. The non-matching values can be
removed by majority voting.

Empirically rewriting the above discussion, for N pairs
of traces i ≤ i ≤ N , a particular pair of trace TPi is
composed of a trace of K − r which can be written as
TK−r : t0K−r, · · · , twK−r, · · · , tMK−r, and the trace for r as
Tr : t0r, · · · , twr , · · · , tMr , where each of these window of
traces contains s bits of trace point.

Combining the Deduce and the Remove step, the correct
value of K − r of the wth window can be written as:

(K − r)w : argmax(K−r)w

[
Pr[(K − r)w|t0K−r, · · · , twK−r]

]
(r)w : argmax(r)w

[
Pr[(r)w|t0r, · · · , twr]

]
(K)w = (K − r)w + (r)w

(K)w = argmax(K)w [TP1, · · ·TPN].

5.2 Attacking Scalar Randomization

We now extend the attack to scalar randomization coun-
termeasure. Although the generic attack principle stays
the same, minor tweaks are needed when applied to this
countermeasure. In scalar randomization, the algorithm
computes K ′ = K + r#E, where the secret scalar K is
randomized every time with a new random number r and
is multiplied with the order of the curve #E.

The attack algorithm has been modified to tackle the
traces from scalar randomization. Unlike scalar splitting,
the scalar cannot be retrieved iteratively, as the modulus
operation on each of the blinded scalars can be applied only
on the full scalar. The final value retrieved after modulus
can be checked for each of the N samples to remove the
incorrectly retrieved candidates.

1) Acquire N blinded scalar multiplication over (K +
r#E)P , for random values of r.

2) Deduce: For each of theN traces, we perform point-wise
matching over s branch misprediction samples of t bits.
It results in N candidates for t bits of K + r#E.

3) Remove: Choose any 3 branch misprediction traces out
of N traces, for random r1, r2, r3. Step 2 reveals t bits of
K+r1#E, K+r2#E and K+r3#E respectively. Take
pair wise difference of the candidate values example
(K + r1#E)− (K + r2#E). Compute r1#E − r2#E,
r2#E−r3#E and r1#E−r3#E. Now for correct t bits
of the blinded scalar, adding up of candidate value of
r1#E− r2#E and r2#E− r3#E would result in non-
empty set on intersection with candidate of r1#E −
r3#E. Combination for empty set for intersection can
be discarded, leading to t bits of blinded scalar.

In simple words, we obtain templates of scalar multi-
plication over k + r1#E, k + r2#E and k + r3#E and
perform template matching for them. Now we have 3 sets
of candidate values say S1, S2 and S3 for three random
split scalars. Now we take pair wise differences of each of
these set elements, so it turns to {S1− S2}, {S2− S3} and
{S1− S3}. Now if we again take pair-wise sum of the first
two difference sets then it again becomes candidate values
for r1#E − r3#E. If the template matching is successful
with high probability, then these two sets would not be
mutually exclusive.

This algorithm is thus extended for the next s samples
with adaptively performing template matching and analysis

8

based on the knowledge of the retrieved t bits. One final
check after retrieving the entire length of the blinded scalar
is to perform a modulus operation on the retrieved blinded
components with the order of the curve. All the independent
retrieval of the n bits should produce same secret scalar K
on taking the modulus.

5.3 Attacking Point Blinding and Projective Random-
ization
The attack algorithm for scalar splitting and scalar random-
ization can be easily adapted against the point blinding and
projective randomization countermeasure. Point blinding
performs K(P + R) instead of KP . Since the number
of branch mispredictions does not directly depend on the
point with which multiplication is done, the conditional
branching statements if affected by the secret scalar K , then
the branch misprediction traces can be used to retrieve the
secret. Template matching returns candidate values for t
bits of the scalar K every time. Considering that the traces
obtained are noisy, we suggest to perform this on multiple
traces and take an intersection between the candidate sam-
ples to eradicate the effect of noise.

The randomized projective coordinate countermeasure
is similarly vulnerable if the control flow of execution is
conditioned on the secret scalar bits. Both point blinding
and projective coordinate randomization are effective coun-
termeasure if the scalar bits are also randomized along with
the input base point randomization.

6 ATTACKING MONTGOMERY LADDER

6.1 Acquiring Traces
The following experiments are performed on an Intel Core
i5-5200U CPU, running Ubuntu 16.04 with kernel 4.4.0-75-
generic, and gcc version 5.4.0. We target the Montgomery
Ladder implementation of ECC double-and-add scalar mul-
tiplication algorithm where the addition and doubling op-
erations are conditioned on the blinded scalar bits. The
sample points of the trace of branch misses obtained from
sampling HPCs are noisy and are highly sensitive to the
sample period of the sampling event. The sampling being
asynchronous to the underlying execution, we acquired
several traces of same input sequence in order to construct
the template. Setting the sampling_period to 80 results in
having one sample point affected by two bits of the scalar.

6.2 Building Branch Misprediction Templates
The success of our attack is highly dependent on how accu-
rate are the built templates. Choosing these 5 sample points
corresponding to a particular predictor state is the most
difficult task. The sample of branch misses obtained over
the input sequences being noisy, we repeat the execution
over the same sequence multiple times to remove the effect
of the noise while building the template.

Initially, we constructed the templates considering the
mean of the obtained samples, as this is the most pre-
ferred technique for conventional side-channel template
attacks [17]. However, the noise affects the sample mean
value, which therefore loses the correlation to the behavior
of the 3-bit predictor. We choose to use the modal value,

2 4 6 8
0

200

400

600

Number of branch misses

O
cc

ur
re

nc
es taken-taken

ntaken-taken
taken-ntaken
ntaken-ntaken

Fig. 7: Confusion in determining the LSB for scalar splitting.

i.e., the sample value which has occurred the most, as the
candidate template point. Though we elaborate template
matching for the full key in Section 8, in the following
section we focus only on matching the LSB.

6.3 Retrieving the LSB for Scalar Splitting

Among the observed sample points, the noisiest sample
point is the first one, which is supposed to be affected only
by the LSB, and the bit following the LSB, but often gets
affected by the branch misses from instruction before the
scalar multiplication starts to execute. The sampling being
asynchronous to the underlying execution, this sampling
noise has to be handled intelligently in order to diminish
the chances of error.

Figure 7 shows a frequency analysis of the first branch
miss samples observed over a set of random binary se-
quences of input. We observe that when the last two bits
of the sequence both lead to not-taken branches, the distri-
bution is shifted towards the left and exhibits overall lesser
branch misses from the rest of the three cases. On the other
hand, if the sequence is having two taken branches, it is
suffering from the most branch misses and the distribution
is shifted towards the right. The other two cases of combina-
tion of one taken and not-taken cannot be distinguished from
each other simply by template matching.

To retrieve the LSB separately, we take the N pairs
of samples for each of the split scalar and the random
component such that we do not classify them if they are
having sample values in the range [3, 4], as it can lead to an
incorrect classification. For each of the N sample pairs:

• If sample point exhibits value < 2, we classify both
branches as not-taken, thus the bits as 11.

• If a sample point exhibits the value 2, we conclude
that the branches are either both not-taken or not-taken
followed by a taken branch, thus the bits as either 11 or
01.

• If a sample point exhibits the value 5, we conclude that
the branches are either taken or taken, followed by a not-
taken branch, thus the bits as either 00 or 10.

• If sample point exhibits a value > 5, we classify both
branches as taken, thus the bits as 00.

After finding the last two bits from all pairs out of the
N , we take their pair-wise sum to conclude the LSB of the
secret scalar K . We can also check whether each of the pairs
leads to the same LSB of the secret scalar K .

9

1 2 3
10 000

12 000

14 000

16 000

18 000

13,385
13,935

14,990

16,652
16,102

15,347

Bit positions from LSB

N
o.

of
ca

nd
id

at
e

sa
m

pl
es

Voted bit = 0 Voted bit = 1

(a) Determining next three bits (1,1,1).

1 2 3
5 000

6 000

7 000

8 000 7,486

6,570 6,7126,574

7,813 7,671

Bit positions from LSB

N
o.

of
ca

nd
id

at
e

sa
m

pl
es

Voted bit = 0 Voted bit = 1

(b) Determining further three bits (0,1,1).

Fig. 8: Determining 3 bits at a time for scalar splitting.

6.4 Iterative Template Matching for Scalar Splitting

We now iteratively retrieve the next scalar bits by applying
the Deduce & Remove strategy once the LSB is known. In
a first step, we perform template matching on the first
t = 10 bits and deduce the candidate values which match
respectively each of the N pairs of samples. Next, we take
the pair-wise summation of such values, which gives us
the candidate values of the first t bits of the secret K .
At this point, we remove the candidates which wrongly
infer the LSB. Figure 8a shows the majority voting of the
next three bit positions from the LSB for the candidate
values, where the correct bits (three consecutive 1s) clearly
have a high majority. One striking observation is that this
winning percentage gradually reduces for the next bits. The
behavior of the branch misses has a huge similarity to 3-bit
predictor characteristics, thus we decide only on the next
3 bits. Once we identify 3 bits, we retrace the split scalar
values individually and remove the candidate values for
both K −R and R which do not tally the retrieved bits.

Knowing the LSB, we perform windowed template
matching on the next t bits by sliding the window every
time with the knowledge of 3 bits. Figure 8b reveals the next
3 bits as in (0, 1, 1) based on adaptive template matching
(i.e., matching the templates after knowing the intermediate
state of the predictor for the retrieved bits). We iteratively
apply the same adaptive template matching to reveal the
next bits without error.

6.5 Efficiency of Deduce & Remove Strategy on Scalar
Randomization

Performing the check appearing in Section 5.2 can remove
a significant amount of traces that are too noisy to leak
any useful information. For scalar randomization, the online
trace acquisition and template building phase work in the
same way as for the scalar splitting algorithm. The attack

1 2 3 4 5

1
2
3
4
5

·104
51,690

49,156

42,333
46,246

48,913

42,261
39,790

33,001
36,871

39,580

9,429 9,366 9,322 9,375 9,333

Number of attempts

N
um

be
r

of
ca

nd
id

at
e

sa
m

pl
es

m
at

ch
ed

Total candidates Removed Conclusive

Fig. 9: Efficiency of Deduce & Remove strategy on scalar
randomization.

algorithm in Section 5.2 is such that the secret scalar can
be retrieved only when the full length of the blinded scalar
has been retrieved. There is no iterative check to detect if
an error occurred. In order to detect an error, we discussed
a check mechanism that helps to correctly retrieve the first
3 bits of each random scalar and we update the predictor
states after each 3 bits and proceed to retrieve the subse-
quent bits.

The template matching phase in scalar randomization
works on N misprediction traces, in our case we choose
N = 10 000. Each of these blinded scalars, after performing
template matching by the least squares method, may have
multiple candidate values to match the traces. The reason is
simply that the acquired trace is noisy. Each blinded trace
being random in nature, we denote the matched candidates
for each trace as N sets R1, R2, · · · , RN , with Ri = {cj :
j ≥ 1, cj ’s are candidate matched templates of t bits}. We
take three consecutive instances from the entire set. It is not
infeasible to explore all

(N
3

)
combinations, so we choose in

such a fashion. Thus we choose sets like Ri, Ri+1, Ri+2 and
performed subtractions on all pairs of the candidate values
as explained in Section 5.2.

The efficiency of this Deduce & Remove strategy is illus-
trated in Figure 9. The number of correctly retrieved candi-
dates is higher than 93%, i.e., out of 10 000 separate random
traces, more than 93% of the traces could identify the last 3
bits correctly among the candidate values. Knowing 3 bits,
we update the state of the predictor and perform template
matching on the next t bits to retrieve the following 3 bits.

7 ATTACKING “DOUBLE-AND-ADD ALWAYS”
In this section, we attack a more realistic and state-of-the-art
implementation of Curve1174, an Edwards curve that has
no obvious secret-dependent branching.1

7.1 Long Integer Multiplication Implementation
In our experiments, we consider the LSB-first double-and-
add always algorithm [18]. The implementation of the algo-
rithm is such that the execution is free from any straightfor-
ward secret scalar dependent branching. Unlike all existing
branch misprediction attacks targeting the secret-dependent

1The code supporting this attack is publicly available:
https://github.com/SBIIT/Branch-Attack-on-Curve-1174.

10

branching of public key algorithms, in this paper we illus-
trate a data-dependent branching key retrieval attack.

The intuition behind the attack is that the executing
operation remains the same for both bit values 0 or 1, but
the operands differ depending on the secret scalar bit. More
specifically, if b = 0, then R1 = 2R1, R1 = R1 + R0 is
executed, else, R0 = 2R0, R0 = R1 + R0 is executed.
Curve1174 follows a unified formula where both of these dou-
bling and addition operations are performed using the same
set of equations. Each of these point additions takes two
points (X1, Y1, Z1) and (X2, Y2, Z2) as input and computes
the third point as (X3, Y3, Z3). For point doublings, the
same point is fed twice as input. These point additions are
implemented using a series of Long Integer Multiplication
(LIM). The field multiplications which form the components
of the addition and doubling operation are implemented
in an arithmetic co-processor with a LIM followed by a
reduction. The detailed algorithm for performing a LIM
can be found in Algorithm 1 in [19]. Each of the LIM has
a modular reduction step which is typically carried out
using a data-dependent conditional structure. The modular
reduction step is thus carried out in each of these multipli-
cation operations and conditional reduction statements are
dependent on the input data as well as the secret scalar. The
secret scalar bit can assume either one of the two values, the
input operands to the LIM thus vary based on the secret
scalar, which inherently affects the branch misprediction
profiles of modular reductions.

7.2 Attack Methodology

In previous attack algorithm we targeted the conditional
branching on the secret, thus considered multiple scalar
bit retrieval at a time. This algorithm does not include any
direct control flow moderation based on the secret bits, thus
we go one step further to understand the template building
and matching of intermediate data based conditional struc-
ture of modular reduction of the double and add unified
formula for Curve1174.

Let us assume that the adversary seeks to identify the
ith bit of the blinded scalar. In the process, the adversary
acquires N independent blinded traces of branch misses.
The assumption for this attack is that the previous (i − 1)
blinded bits have been retrieved for each of the N traces.
The adversary guesses each ith bit of the jth blinded scalar
sequence (j ∈ N) having known all previous (i− 1) bits.

For a guess of either 0 or 1, the adversary simulates the
branch misses corresponding to all the subsequent modular
reduction function calls for the ith bit of the jth blinded
scalar. To do so, the adversary uses the b-bit predictor model
and generates a trace of simulated mispredicted branch se-
quences, denoted bm sim0

i,j for a guess of 0, and bm sim1
i,j

for a guess of 1. The branch misprediction samples observed
from the perf ioctl calls corresponding to the ith bit and
jth blinded scalar are denoted as bm perfi,j . The relative
ordering of the branch misses as observed from the perf call
bm perfi,j shows a correlation to the relative ordering of
the branch misses for the correct guess.

In noisy environments, this relative correlation is not
very reliable to craft a highly successful attack. Thus in-
stead we demonstrate a more realistic approach using the

Fig. 10: Template Building Phase.

described logic of simulated branch mispredictions in the
following subsection.

Acquiring Traces
In the previous attack, we targeted the secret-dependent
conditional branching, thus there were less affected sample
points. In this experiment we target all the data-dependent
operations involved in long integer multiplications that are
performed while each point addition operation executes.
Each long integer multiplication approximately executes
with 12 000 instructions.

The measurement procedure in our experiments does
not have direct communication between the targeted curve
module and the handler code. As a result of this, there
is no specific trigger signal available to the adversary to
understand the correspondence between a misprediction
and the secret bit. Without loss of generality, we made an
initial estimation of the number of instructions required
to execute each point addition operation by taking the
expectation of repeatedly running it. Typically, we observed
600 misprediction samples (with a sampling period of 1 600
instructions) for a set of two point addition operations for a
particular secret scalar bit.

The trace collection phase is the most time consuming
phase of the attack. In our experiments, this took at the most
less than an hour. The later part of the analysis of template
building and template matching is purely computational
and iterative in nature.

7.3 Template Building on the Acquired Traces
In the template building phase, we consider 600 sample
points which are responsible for a particular secret scalar
bit. We apply a windowing technique to determine the
correspondence of the observed samples and the simu-
lated branch mispredictions. Building template for data-
dependent branches in Curve1174 requires two sets of
branch misprediction traces: (1) the simulated mispredicted
traces from 3-bit predictor for each modular reduction op-
erations involved in a point addition operation, (2) the perf
samples corresponding to the same set of inputs.

The adversary targets each of the j blinded scalars in an
iterative manner. The ith bit of blinded scalar is guessed and
both 0 and 1 is appended to the already known (i− 1) bits,
separately for each of the j blinded scalar sequences. We
define bm perf(i=0),j , bm perf(i=1),j as branch mispredic-
tion samples affected by the guessed bit, and the operation
is performed over all j sequences and known (i − 1) bits

11

for two separate guesses. This essentially generates 2 · j se-
quences and we separately take the ioctl branching samples.
Similarly, we have the simulated branch misses from the 3-
bit predictor bm sim0

i,j and bm sim1
i,j for both guesses as

discussed earlier. We illustrate the template building phase
in Figure 10. The steps to build a template are as follows:

1) For each k instances of the modular reduction
operation, we apply a windowing technique to
bm perf(i=0),j and bm perf(i=1),j to identify approx-
imately how many samples are responsible for each
modular reduction operation.

2) Now for guess = 0, we consider bm perf(i=0),j and
bm sim0

i,j , and separately build template points based
on whether or not they suffer from a branch miss.

3) For guess = 0, we separately consider templates from
the samples in bm perf(i=0),j for each of the k modular
reduction operations involved for point addition for
each of the j sequences. We construct two bins for
each of the k modular reduction operations based on
whether they have a simulated branch miss at particu-
lar modular reduction step bm sim0

i,j . Now we fill the
bin miss(i=0),k with samples from bm perf(i=0),j for
the kth particular modular reduction, if there has been
a simulated branch miss in bm sim0

i,j . Otherwise, we
fill bin no miss(i=0),k if there is no misprediction.

4) We separately construct templates taking the mode
of the distributions of each of these constructed bins
as described in the previous discussions of template
building.

At the end of this step, we have 2 · k separate bins for
all the k modular reduction operations considering all the
j sequences where all the ith bit has been guessed to zero.
A similar construction can be performed with ith bit being
guessed as 1.

7.4 Template Matching to Unknown Traces
In this phase, the adversary observes the acquired traces
over the unknown ith bit for each of the blinded scalar
sequences. For each of these sequences, a template matching
is performed to the templates built in the previous phase.

We assume that the adversary knows the previous (i−1)
bits of the blinded secret scalar. He can also guess the
unknown bit and simulate the branch misprediction to
identify branch mispredictions for the modular reduction
operations. At this stage, the adversary takes branch mis-
prediction samples for each of the k modular reduction
operation, and matches with the templates built for both
guesses using the least squares method (LSQ).

The simulated branching for guessed bit 0 may cause a
misprediction. If there has been a simulated misprediction
for guess = 0, then the unknown samples are matched
with the templates corresponding to bin miss(i=0),k, else,
the unknown samples are matched with the templates cor-
responding to bin no miss(i=0),k. At this step, the least
squares method returns a distance for kth modular re-
duction for templates built with guess = 0 from either
the mispredicted template or the template with no mis-
prediction. Similarly, the template matching is applied on
each k operations for guess = 1. We then sum up all the
respective distances obtained by template matching for all k

TABLE 1: Retrieval of few target bit positions across a secret
scalar with scalar splitting countermeasure with 100 traces.

Bit position Time (s) Scalar bit Retrieved

12 142.73 1 yes
45 206.42 0 yes
60 241.08 0 yes
89 302.17 0 yes

modular reduction operations for guess = 0 and guess = 1
respectively. Finally, we choose the ith unknown scalar bit
to be the one having least sum of distances from the LSQ.

7.5 Attacking Scalar Splitting and Randomization

Template building and matching phases as discussed in the
previous subsections are highly efficient to retrieve the un-
known blinded scalar bits for all blinding countermeasures.
These two phases constitute the Deduce step of our attack.
Unlike the secret-dependent branching results, the sample
points obtained in data-dependent branching attack provide
us various modular operations to check the efficiency of our
attack. This multiple template matching step to deduce a
single bit inherently makes this attack much efficient than
the previous one. The conditions for the Remove step is
exactly same as has been applied previously.

The conditioning of branch prediction was used in the
previous attack as described in Section 6.3, though in the
context of the current attack the conditioning of the perf
handler is impractical. This is because for the current attack
scenario the branches are executed as a result of the iterated
data dependent operations. Thus mimicking a particular
branch sequence as a result of pure data dependent instruc-
tion needs crafting of data in such a fashion to enforce
occurrence of such branches. Thus we suggest that the
conditioning is not mandatory to demonstrate our attack,
though it should be noted, if a particular adversary is
capable of conditioning the branch prediction hardware to
one of his desired state then it makes the side channel less
noisy and easier to analyze.

The success rates of the attack on scalar splitting are
illustrated in Figure 11. The figure shows the percentage of
sequences that has successfully revealed the blinded scalar
for 4 consecutive bit positions over 10 000 sample traces.
Individual template matching on each of the split scalars
reveals the split scalar and the random mask efficiently.
Thus, the Deduce step seldom gives a wrong probability
of matching and the overall success probability improves.
In our experiments we revealed 4 bits consecutively on
Curve1174 long integer multiplication over split scalars and
applied the final check using the Remove step to prune out
the wrongly deduced scalars.

Similarly, this attack is highly efficient to retrieve blinded
scalar bits in a scalar randomization countermeasure as
illustrated in Figure 12. In this figure, we plot the success,
failure and inconclusive percentages of the 10 000 blinded
scalar getting retrieved. Since the template matching algo-
rithm reveals one bit at a time, the Remove step for scalar
randomization cannot be applied to each bit. This is because
the Remove algorithm for scalar randomization would fail to
remove any bits wrongly getting predicted by the Deduce

12

1 2 3 4
0

50

100
99.6 97.8 99.1 97.5

0 0.1 0.9 2.40.4 2.1 0 0.1

Bit position from LSB

Pe
rc

en
ta

ge
of

m
at

ch
es

Success Failure Inconclusive

Fig. 11: Probabilities of bit retrieval for scalar splitting in
Curve1174 over 10000 traces.

1 2 3 4
0

50

100
100 96.1 99.7 93.8

0 1.8 0.3 6.10 2.1 0 0.1

Bit position from LSB

Pe
rc

en
ta

ge
of

m
at

ch
es

Success Failure Inconclusive

Fig. 12: Probabilities of bit retrieval for scalar randomization
in Curve1174 over 10000 traces.

step. In this case, the template matching step is performed
on t multiple bits subsequently and the Remove algorithm is
applied on these multiple retrieved bits together (identically
to the previous attack described in Section 6.5).

We present the experimental results on random target
bits of the secret scalar in Table 1 for scalar splitting counter-
measure. The attack succeeds in recovering any of the 128
secret scalar bits correctly, assuming that all the previous
bits are correctly retrieved in the previous iterations of the
attack. The table also shows the time required for the attack
analysis, which includes the time to form the templates
for each of the split scalar and the random traces and
matching the template with the observed traces. Since the
traces for higher bit positions are longer, the time taken for
the analysis increases with bit position.

The attack methodology described here is much stronger
than the attack demonstrated on secret-dependent branch-
ing for Montgomery Ladder implementation and this is
because the number of samples getting affected for data-
dependent branching is observed over many modular
reductions and thus larger in number than the secret-
dependent branching.

8 INVESTIGATING TEMPLATE MATCHING

In the discussion provided in the previous section, modal
values for the corresponding trace points were elected as
the reference template value for the particular classification.
The primary reason behind this selection was that the
noise component in the individual trace points were not
uniformly affected. Some of the trace points were highly
affected by noise and for those trace points, branch mis-
prediction values were majorly varying from the signal

component. On the other hand, the rest of the trace points
were having only the signal component. If the distribution
of these individual trace points were considered to be
Gaussian, the mean value of these classified templates were
showing almost no difference since the noise component in
the noisy set of traces was hiding the signal component
of the less noisier traces. Remarkably, on the other hand
there are clear differences if the highest occurring value(ie,
the modal) is considered as the template point, since in
this case the signal component remains unaffected from
the effect of noisy samples. Based on this observation from
the individual branch misprediction tracepoints, we have
considered modal values in place of mean values to be
the representative of their respective template class. Thus
following this template building phase, we supported the
results with a Least Squared template matching phase which
worked with significantly high accuracy.

The original form of template based analysis on power
traces as presented in [17], [20], [21], works with a construc-
tion of mean trace vector and a noise co-variance matrix.
The noise co-variance matrix holds a major significance on
the success of the template matching since it captures the
correlation of the noise components of the consecutive trace
points. The noise covariance matrix grows quadratically
with the increase of trace points. We have reworked this
template creation and matching steps using the same equa-
tions as in [17], [20]. The probability of template matching
for a test trace t, with a template class defined with a mean
trace m and noise covariance matrix (C) on assumption of
data di and key kj is calculated as:

p(t; (m, C)di,kj
) =

exp
(
− 1

2 · (t−m)′ · C−1 · (t−m)
)√

(2 · π)T · det(C)
The accuracy of template matchings for the individual tem-
plates using the above equation are shown in Figure 13 in
green bars. The accuracy of individual template being cor-
rectly matched using the noise covariance matrix calculation
are higher than other techniques.

The matching step as described in [20] involves compu-
tation of an inverse of the co-variance matrix which could
be difficult to compute if there are more points in the
trace matrix. Thus [20] introduced the concept of reduced
templates which performs template matching with the fol-
lowing equation.

p(t;m) =
1√

(2 · π)NIP
· exp

(
− 1

2
· (t−m)′ · (t−m)

)
Constructing reduced templates from the branch mispre-
diction samples and the accuracy of template matching
using reduced templates is illustrated in Figure 13 in orange
bars. The reduced template matching accuracy is quite good
compared to the best accuracy observed via mean and noise
covariance template matching in green.

Next, we replaced the mean vector of the reduced
template to the highest observed tracepoint value, i.e., the
median of the tracepoint values and repeated the exact
experiment. This time the template matching step exactly
matches with the modal value selection and matching using
LSQ step that we were performing earlier in the paper. This
particular mode reduced template matching in magenta
performs comparably to the mean reduced templates in

13

0 1 2 3 4 5 6 7
800

900

1,000 995
974

884

946

1,000
988

912

972
990

925

861

919

1,000

968

882

919

992

910

874

923

1,000

969

867

918

Template classes

N
um

be
r

of
m

at
ch

es
Mean and noise covariance Mean LSQ Mode LSQ

Fig. 13: Number of successful template matching for scalar splitting in Curve1174.

orange and sometimes better than the mean reduced LSQ.
Figure 13 thus illustrates the comparison across different
template matching techniques and all the three techniques
work with significant accuracy. Thus we can conclude from
these results that Mean LSQ and Mode LSQ are equally
compatible as an estimate for successful template matching.

9 ATTACKING OTHER CRYPTOGRAPHIC IMPLE-
MENTATIONS

9.1 Template Attack on Curve25519

In this section, we extend our attack description to the
scalar multiplication computation on the Montgomery
Curve25519. An efficient way for performing scalar mul-
tiplication on Curve25519 is to use homogeneous projec-
tive coordinates. A more efficient implementation further
uses the x-coordinate-only representation of points as de-
scribed in [22]. We target a MSB-first Montgomery powering
ladder algorithm realizing the scalar multiplication imple-
mentation. The target implementation involves a sequence
of point swappings based on the secret bit followed by
point additions and point doublings. We have adapted the
Montgomery ladder algorithm for Curve25519 using the
set of addition doubling formula on projective coordinates
as shown in Algorithm 1 in the paper [23]. The iterative
algorithm as in [23], computes same set of equation on every
iteration. First, based on the secret scalar bit a conditional
swap of the input is performed, then it is followed by
addition and doubling equations. The implementation has
no secret dependent branching for performing addition and
doubling steps and the conditional swapping is realized
using constant time swap as in Algorithm 7 in [24].

Though there are no secret dependent conditional
branching in the implementation, the branchings corre-
sponding to the modular reduction operation with respect
to the prime 2255−19 are non-constant time. The number of
reductions and the correction step are dependent on the re-
duction based on the new prime 2255−19 and the implemen-
tation is similar to Curve1174 discussed in Section 7. The
template building phase results are presented in Figure 15,
and the success to different template matching techniques
are illustrated in Figure 14. The template matching accuracy
for Curve25119 as appears in Figure 14 is significantly high.
Since we target a MSB first algorithm, the Remove step would
not work on the partial bits. So in this case, the Remove
step can only be applied after all the bits of blinded scalar

values are matched separately. This is similar to the scalar
randomization method described in Section 7.5.

9.2 Attacking RELIC Implementations
There are a few implementations of Curve1174, an Ed-
ward curve, available as a part of public cryptographic
libraries. In this section, we illustrate the applicability of
our branch prediction based template attack to the publicly
available implementations of Curve1174 and Curve25519 in
RELIC [6]. RELIC is a modern cryptographic library which
provides several ECC and pairing implementations, imple-
mented with emphasis on efficiency and flexibility [7]. There
are a number of algorithmic choices which a developer
can use while executing the particular curve operations. To
illustrate that the library is vulnerable to branch mispre-
diction traces, we perform a simple experiment where we
incorporate a template-based analysis targeting the branch
mispredictions for Montgomery Ladder implementation.
Figure 16a represents branch misprediction samples from
HPCs for the Montgomery Ladder algorithm with curve
parameters of Curve25519 for two different guesses of the
bit value.

The RELIC library comes with a number of test codes
along with the implementation. We target one such test code
for Curve1174. The template building and matching steps
are similar to the attack demonstrated in Section 7.3. Like the
previous attack methodology, we incorporate an iterative
attack on each bit of the blinded scalar. The algorithm
under analysis being a MSB first algorithm, the Figure 16b
illustrates the success rate of the scalar blinded bits retrieved
correctly using the template matching technique.

10 COUNTERMEASURES

At the application level, the first and the most obvious coun-
termeasure suggested by the previous works in literature is
to implement the scalar multiplications such that the control
flow of the execution is independent of the secret scalar K .
However, in this paper we showed that the data-dependent
branches can still be attacked by the adversary and thus
are inefficient to thwart branch misprediction attacks. Thus
we suggest that the code needs to be constant-time such
that it is free from both secret and data-dependent branch-
ing. Projective randomization and point blinding would
be vulnerable if we target the naı̈ve Montgomery ladder
with branches depending on secret. However, when secret
dependent branches are removed, the present attack does

14

0 1 2 3 4 5 6 7
800

900

1,000

905
927

898
880

976

898
910

986

854
870 872

855

966

872 873

949

866

894
871

839

974

892 883

946

Template classes

N
um

be
r

of
m

at
ch

es
Mean and noise covariance Mean LSQ Mode LSQ

Fig. 14: Number of successful template matching for scalar splitting in Curve25519.

 60

 70

 80

 90

 100

 110

 120

 130

 0 2 4 6 8 10 12 14

B
ra

nc
h

m
is

pr
ed

ic
tio

n
va

lu
es

Branch misprediction samples

tmplt for bits 000
tmplt for bits 001
tmplt for bits 010
tmplt for bits 011
tmplt for bits 100
tmplt for bits 101
tmplt for bits 110
tmplt for bits 111

Fig. 15: Difference in templates of the scalar multiplication
on Curve25519 for three subsequent bits from the LSB.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 2 4 6 8 10 12

B
ra

n
ch

 m
is

p
re

d
ic

tio
n
 v

a
lu

e
s

Branch misprediction samples

template for bit = 0
template for bit = 1

(a) Templates of the Montgomery Ladder addition and the doubling step
executed in two different execution scenarios for the target bit.

1 2 3 4
0

50

100
96.75 98.95 99.6 97.75

3.25 1.05 0.4 2.250 0 0 0

Bit position from MSB

Pe
rc

en
ta

ge
of

m
at

ch
es

Success Failure Inconclusive

(b) Probabilities of bit retrieval for scalar randomization in RELIC imple-
mented Curve1174.

Fig. 16: Determining 3 bits at a time for scalar splitting.

not directly apply. Thus the attack presented in Section 6 still
find relevance in presence of such point randomization since
the control flow of execution depends directly on secret
bits. While the attack in Section 7 performs double-and-
add always, this countermeasure is still applicable in such
case. However the fact that the modulo operations have
branches depending on the data, can be exploited using

cross-correlating branch miss traces. For doubling operation
there are many pairs with same long integer multiplication
inputs (and thus have the same branch pattern).

Another countermeasure is to randomize the state of
the predictor intermediate to the execution. This can be
achieved, e.g., at the system level, by introducing random
branching executions in parallel to the execution of the
victim library. The objective is to randomize the state of the
predictor to inhibit the Deduce step of the attack.

Randomization in several layers of the algorithm and
measurements can only make the attack more difficult, as
the adversary may be able to obtain more fine-grained
traces. This brings us again to the open challenge of rethink-
ing the structure of the branch predictor at the hardware level,
such that they are inherently secure against these attacks.

11 RELATED WORK

11.1 Microarchitectural Side-Channel Attacks
Acıiçcmez et al. [25] first observed that the penalty for
mispredicted branches in number of clock cycles is a side
channel able to identify the data-dependent operations of
the public-key cryptographic system. A further improved
version of this attack [26], [27] has also been carried out with
proper knowledge of the underlying hierarchical Branch
Target Buffer (BTB) architecture of the target system. The
work of Acıiçcmez et al. [25] has been extended by Bhat-
tacharya and Mukhopadhyay [3], using the HPCs present in
recent processors. Lee et al. [28] used the Last Branch Record
feature of Intel CPUs that stores information on recent
branches to attack SGX enclaves. Molnar et al. [29] pro-
posed techniques for implementing binary exponentiation
algorithms without requiring branch instructions. However,
studying the use of HPCs to exploit cipher codes imple-
mented with branch statements is vital, as there still exist
several standard implementations using branches. More-
over, some implementations without conditional branches
have been subjected to side-channel attacks other than tim-
ing [30], [31]. Alternately, other side-channels were also used
to exploit secret dependent leakage in ECC [32].

In addition to targeting cryptographic algorithms, side
channels on the BPU can be used to perform other types
of side-channel attacks, such as deriving kernel and user-
level ASLR offset [33], or covert channels [34], [35]. Recently,
a side-channel attack on directional branch predictors was
proposed [14]. The recent Spectre [36] attack also exploits
branch misprediction and requires a fine-grained knowl-
edge of the branch prediction unit.

15

Finally, HPCs have already been utilized for attacks. Uh-
sadel et al. [37] exploited L1 and L2 D-cache miss counters to
attack the AES T-Table implementation found in OpenSSL.

11.2 Reverse-Engineering CPU Components

Few papers have tackled the task of reverse engineering
the BPU. In particular, Milenkovic et al. [38] determined
the size and organization of the BTB as well as the length
of local and global branch history components, on Intel
P6 and NetBurst architectures. Uzelac and Milenkovic [39]
reverse-engineered more details of these structures, includ-
ing interactions between different structures, focusing on
the Pentium M architecture. Prior work mostly focused on
the structures of the branch predictor rather on the predictor
itself, using microbenchmarks. As these works were pub-
lished respectively on 2004 and 2009, they also target older
processors.

Apart from the BPU, other micro-architectural compo-
nents have been reverse-engineered. Maurice et al. [40]
reverse-engineered the last-level cache addressing scheme
of modern Intel CPUs, using information from the uncore
HPCs. Pessl et al. [41] reverse-engineered the DRAM map-
ping functions on both x86 and ARM platforms, using a
timing side channel.

12 DISCUSSION AND FUTURE WORK

We have targeted single trace attacks by successfully apply-
ing template attack on the partial scalar components and
trying to retrieve them iteratively with the branch mispre-
diction traces. However, Howgrave-Graham and Smart [42]
have shown that even with a lower number of known
bits from multiple random scalar components could be
subjected to Lattice based attacks to recover the entire key.
The paper presents a detailed discussion on how to use
lattice attacks to break ECDSA when a small numbers of bits
if many split random keys are known. This scenario directly
applies to our paper as well. The full key recovery has been
adapted from the seminal work by Coppersmith [43], which
uses the LLL algorithm to solve the univariate and bivariate
modular polynomial equations. This opens a new direction
to our present paper.

Moreover, the open source implementation of isogeny-
based cryptography [44] is inherently composed of condi-
tional statements which could be exploited by observing
branch mispredictions. This is an interesting research direc-
tion that we would like to explore in the future.

13 CONCLUSION

Information leakage from the branch predictor is known
to pose a serious threat to asymmetric key cryptographic
algorithms containing a conditional statement depending
on the secret. In this paper, we presented the first template
attack on the branch predictor. We initially performed the re-
verse engineering of the branch predictor of various micro-
architectures, from Nehalem to Broadwell, and showed that
recent generations of branch predictors can be modeled as a
3-bit saturating counter. Subsequently, we used this model
to attack the DPA secure implementations of ECC, which

were believed to be secure against branch prediction side-
channel attacks. We also tackled Curve1174, Curve25519,
where the double-and-add always algorithm implementa-
tion is free from conditional branching on the secret scalar.

ACKNOWLEDGMENTS

This work was supported in part by the TCS Ph.D Fellow-
ship in IIT Kharagpur and Temasek Laboratories in NTU
Singapore, and in part by the project ANR-19-CE39-0007
MIAOUS of the French National Rsearch Agency (ANR).

REFERENCES

[1] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” Journal of Cryptographic Engineering, vol. -, pp. 1–27,
Dec. 2016.

[2] P. C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,” in CRYPTO ’96, 1996,
pp. 104–113.

[3] S. Bhattacharya and D. Mukhopadhyay, “Who watches the watch-
men?: Utilizing performance monitors for compromising keys of
RSA on intel platforms,” in CHES, 2015, pp. 248–266.

[4] J. Coron, “Resistance against differential power analysis for elliptic
curve cryptosystems,” in CHES, 1999, pp. 292–302.

[5] C. Clavier and M. Joye, “Universal exponentiation algorithm,” in
CHES, 2001, pp. 300–308.

[6] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient LIbrary
for Cryptography,” https://github.com/relic-toolkit/relic.

[7] N. E. Mrabet and M. Joye, Guide to Pairing-Based Cryptography.
Chapman & Hall/CRC, 2016.

[8] “OpenSSL,” https://github.com/openssl/openssl.
[9] “libgcrypt,” https://github.com/gpg/libgcrypt.
[10] “BouncyCastle,” https://github.com/bcgit/bc-java/tree/

master/jce/src/main\\/java/javax/crypto.
[11] “mbedTLS,” https://github.com/ARMmbed/mbedtls.
[12] O. Aciiçmez, Ç. K. Koç, and J. Seifert, “On the power of

simple branch prediction analysis,” IACR Cryptology ePrint
Archive, vol. 2006, p. 351, 2006. [Online]. Available: http:
//eprint.iacr.org/2006/351

[13] O. Aciiçmez, J. Seifert, and Ç. K. Koç, “Predicting secret keys via
branch prediction,” IACR Cryptology ePrint Archive, vol. 2006, p.
288, 2006. [Online]. Available: http://eprint.iacr.org/2006/288

[14] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev,
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor,” in ASPLOS’18, 2018.

[15] Ubuntu Manuals, “perf event open-set up performance mon-
itoring,” http://manpages.ubuntu.com/manpages/wily/man2/
perf\ event\ open.2.html, 2017.

[16] J. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and D. Naccache,
“Improving the big mac attack on elliptic curve cryptography,”
in The New Codebreakers - Essays Dedicated to David Kahn on the
Occasion of His 85th Birthday, 2016, pp. 374–386.

[17] S. Chari, J. R. Rao, and P. Rohatgi, “Template Attacks,” in CHES,
2002.

[18] M. Joye, “Highly regular right-to-left algorithms for scalar multi-
plication,” in CHES, 2007, pp. 135–147.

[19] A. Bauer, E. Jaulmes, E. Prouff, J.-R. Reinhard, and J. Wild, “Hori-
zontal collision correlation attack on elliptic curves,” Cryptography
and Communications, vol. 7, no. 1, pp. 91–119, 2015.

[20] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007.

[21] O. Choudary and M. G. Kuhn, “Efficient template attacks,” in
International Conference on Smart Card Research and Advanced Ap-
plications. Springer, 2013, pp. 253–270.

[22] P. L. Montgomery, “Speeding the pollard and elliptic curve meth-
ods of factorization,” Mathematics of computation, vol. 48, no. 177,
pp. 243–264, 1987.

[23] P. Koppermann, F. De Santis, J. Heyszl, and G. Sigl, “X25519
hardware implementation for low-latency applications,” in 2016
Euromicro Conference on Digital System Design (DSD). IEEE, 2016,
pp. 99–106.

16

[24] C. Costello and B. Smith, “Montgomery curves and their arith-
metic,” Journal of Cryptographic Engineering, vol. 8, no. 3, pp. 227–
240, 2018.

[25] O. Aciiçmez, Çetin Kaya Koç, and J.-P. Seifert, “Predicting Secret
Keys Via Branch Prediction,” in CT-RSA, 2007, pp. 225–242.

[26] O. Aciiçmez, S. Gueron, and J.-P. Seifert, “New Branch Prediction
Vulnerabilities in OpenSSL and Necessary Software Countermea-
sures,” in IMA Int. Conf., ser. Lecture Notes in Computer Science,
S. D. Galbraith, Ed., vol. 4887. Springer, 2007, pp. 185–203.

[27] O. Aciiçmez, J.-P. Seifert, and Çetin Kaya Koç, “Micro-
Architectural Cryptanalysis,” IEEE Security & Privacy, vol. 5, no. 4,
pp. 62–64, 2007.

[28] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “In-
ferring fine-grained control flow inside sgx enclaves with branch
shadowing,” in 26th USENIX Security Symposium, 2017.

[29] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The pro-
gram counter security model: Automatic detection and removal
of control-flow side channel attacks,” in Information Security and
Cryptology - ICISC 2005, 8th International Conference, Revised Selected
Papers, 2005, pp. 156–168.

[30] P. Fouque and F. Valette, “The doubling attack - why upwards is
better than downwards,” in CHES, 2003, pp. 269–280.

[31] A. Chakraborty, S. Bhattacharya, T. H. Dixit, C. Rebeiro, and
D. Mukhopadhyay, “Template attack on SPA and FA resistant
implementation of montgomery ladder,” IET Information Security,
vol. 10, no. 5, pp. 245–251, 2016.

[32] E. Nascimento, Ł. Chmielewski, D. Oswald, and P. Schwabe,
“Attacking embedded ecc implementations through cmov side
channels,” in International Conference on Selected Areas in Cryptogra-
phy. Springer, 2016, pp. 99–119.

[33] D. Evtyushkin, D. V. Ponomarev, and N. B. Abu-Ghazaleh, “Jump
over ASLR: attacking branch predictors to bypass ASLR,” in
MICRO 2016, 2016.

[34] ——, “Covert channels through branch predictors: a feasibility
study,” in Workshop on Hardware and Architectural Support for Se-
curity and Privacy, HASP@ISCA 2015, 2015.

[35] D. Evtyushkin, D. Ponomarev, and N. B. Abu-Ghazaleh, “Under-
standing and mitigating covert channels through branch predic-
tors,” TACO, vol. 13, no. 1, pp. 10:1–10:23, 2016.

[36] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
S&P, 2019.

[37] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hard-
ware performance counters,” in Fifth International Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2008, pp. 59–
67.

[38] M. Milenkovic, A. Milenkovic, and J. Kulick, “Microbenchmarks
for determining branch predictor organization,” Software: Practice
and Experience, vol. 34, no. 5, pp. 465–487, 2004.

[39] V. Uzelac and A. Milenković, “Experiment flows and microbench-
marks for reverse engineering of branch predictor structures,” in
Proceedings of the 2009 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS’09), 2009, pp. 207–217.

[40] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Fran-

cillon, “Reverse engineering intel last-level cache complex ad-
dressing using performance counters,” in RAID, 2015.

[41] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: exploiting DRAM addressing for cross-cpu attacks,”
in USENIX Security Symposium, 2016.

[42] N. A. Howgrave-Graham and N. P. Smart, “Lattice attacks on dig-
ital signature schemes,” Designs, Codes and Cryptography, vol. 23,
no. 3, pp. 283–290, 2001.

[43] D. Coppersmith, “Finding a small root of a univariate modular
equation,” in International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 1996, pp. 155–165.

[44] Microsoft, “Sidh v3.2,” https://github.com/microsoft/
PQCrypto-SIDH.

Sarani Bhattacharya is currently joining as a
post-doctorate researcher at KU Leuven Bel-
gium. She has just finished her Ph.D from IIT
Kharagpur, India. Her current research interests
include micro-architectural attacks and counter-
measures, secure system design and computer
architecture security.

Clémentine Maurice is a researcher working for
CNRS at IRISA (Rennes, France). Among other
topics, she is interested in micro-architectural
covert and side channels in commodity comput-
ers and servers, and reverse-engineering pro-
cessor parts.

Shivam Bhasin is currently a Senior Research
Scientist and Principal Investigator at PACE Lab,
Nanyang Technical University, Singapore since
2015. His research interests include embedded
security, trusted computing and secure designs.

Debdeep Mukhopadhyay received his PhD
from Dept. of Computer Science and Engineer-
ing, IIT Kharagpur in 2007, where he is presently
an Associate Professor. His research interests
include cryptography, VLSI of cryptographic al-
gorithms, hardware security and side channel
analysis.

