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Abstract. General-Purpose computing on Graphics Processing Units
(GPGPU) combined to cloud computing is already a commercial suc-
cess. However, there is little literature that investigates its security im-
plications. Our objective is to highlight possible information leakage due
to GPUs in virtualized and cloud computing environments. We provide
insight into the different GPU virtualization techniques, along with their
security implications. We systematically experiment and analyze the be-
havior of GPU global memory in the case of direct device assignment.
We find that the GPU global memory is zeroed only in some config-
urations. In those configurations, it happens as a side effect of Error
Correction Codes (ECC) and not for security reasons. As a consequence,
an adversary can recover data of a previously executed GPGPU applica-
tion in a variety of situations. These situations include setups where the
adversary launches a virtual machine after the victim’s virtual machine
using the same GPU, thus bypassing the isolation mechanisms of virtu-
alization. Memory cleaning is not implemented by the GPU card itself
and we cannot generally exclude the existence of data leakage in cloud
computing environments. We finally discuss possible countermeasures for
current GPU clouds users and providers.
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1 Introduction

Graphics Processing Units (GPUs) benefit from a great interest from the sci-
entific community since the rise of General-Purpose computing on Graphics
Processing Units (GPGPU) programming. GPGPU allows performing massively
parallel general purpose computations on a GPU by leveraging the inherent par-
allelism of GPUs. GPUs exploit hundreds to thousands of cores to accelerate par-
allel computing tasks, such as financial applications [8,22,40], encryption [16,45],
and Bitcoin mining [23]. They are also used as a co-processor to execute malicious
code that evades detection [24,41], or on the opposite to monitor security [26].
GPUs have recently been offered by several cloud computing providers to supply
on demand and pay-per-use of otherwise very expensive hardware.



While GPU Clouds have been mainly used for on demand high performance
computing, other applications emerge. For example, in cloud gaming game ren-
dering is done in the cloud allowing to play to GPU intensive games on low
end devices, such as tablets. Virtualized workstations allow performing data and
graphically intensive tasks on regular desktops or laptops, such as movie editing
or high-end computer aided design.

GPUs have been designed to provide maximum performance and through-
put. They have not been designed for concurrent accesses, that is to support
virtualization or simultaneous users that share the same physical resource. It is
known that GPU buffers are not zeroed when allocated [20]. This raises confi-
dentiality issues between different programs or different users when GPUs are
used natively on personal computers [12]. Clearly, the attack surface is larger in
a cloud environment when several users exploit the same GPU one after another
or even simultaneously. However, such a setup has not been previously studied.

Our objective is to evaluate the security of GPUs in the context of virtual-
ized and cloud computing environments, and particularly to highlight potential
information leakage from one user to another. This is a topic of interest since
users cannot trust each other in the cloud environment. However, identifying
possible information leakage in such environments is an intricate problem since
we are faced with two layers of obscurity: the cloud provider as well as the GPU.

Contributions

In this paper, we study information leakage on GPUs and evaluate its possible
impact on GPU clouds. We systematically experiment and analyze the behav-
ior of GPU global memory in non-virtualized and virtualized environments. In
particular:

1. We give an overview of existing GPU virtualization techniques and discuss
the security implications for each technique.

2. We reproduce and extend recent information leakage experiments on non-
virtualized GPUs [9,12]. In addition to previous work, we show how an ad-
versary can retrieve information from GPU global memory using a variety of
proprietary and open-source drivers and frameworks. Furthermore, we find
that in the rare cases where GPU global memory is zeroed, it is only as a
side effect of Error Correction Codes (ECC) and not for security reasons.
We also propose a method to retrieve memory in a driver agnostic way that
bypasses some memory cleanup measures a conscious programmer may have
implemented.

3. We experiment the case of virtual environments with lab testbeds under
Xen and KVM using a GPU in direct device assignment mode, which is the
GPU virtualization technique most commonly used in GPU clouds. We also
conduct experiments on a real life cloud. We explain under which conditions
and how an adversary can retrieve data from GPU global memory of an
application that has been executed on a different virtual machine (VM).

4. We present recommendations to limit information leakage in cloud and vir-
tualized environments.



The remainder of this paper is organized as follows. Section 2 presents the
background related to GPUs and the related work on information leakage and
GPU virtualization. Section 3 details our adversary model and the security im-
pact of the different GPU virtualization techniques. Section 4 exposes our exper-
iments, organized according to two main parameters: the degree of virtualization
and the method used to access the memory. Section 5 details the experiments
that leverage GPGPU runtime to access the memory, and Section 6 the ex-
periments that exploit the PCI configuration space. Section 7 presents possible
countermeasures. Section 8 concludes.

2 Background

In this section, we recall basic notions on GPUs, as well as related work on
information leakage and GPU virtualization.

2.1 GPU Basics

In this paper we focus on NVIDIA GPUs because they are the most widespread
devices used in GPGPU applications, yet they are poorly documented. The Tesla
architecture3 introduced a general purpose pipeline, followed by the Fermi and,
the latest, Kepler architecture. GPUs handle throughput-based workloads that
have a large degree of data parallelism. GPUs have hundreds of cores that can
handle hundreds of threads to mitigate the latency caused by the limited memory
bandwidth and the deep pipeline. A GPU is first composed of several Streaming
Multiprocessors (SM), which are in turn composed of Streaming Processor cores
(SP, or CUDA cores). The number of SMs depends on the card, and the number
of SP per SM depends on the architecture. The Fermi architecture introduces a
memory hierarchy. It offers an off-chip DRAM memory and an off-chip L2 cache
shared by all SMs. On-chip, each SM has its own set of registers and its own
memory partitioned between a L1 cache and a shared memory accessible by the
threads running on the SPs. Figure 1 depicts a typical GPU architecture.

CUDA is the most used GPGPU platform and programming model for
NVIDIA GPUs. CUDA allows developers to write GPGPU-specific C functions
called kernels. Kernels are executed n times in parallel by n threads. Each SP
handles one or more threads. A group of threads is called a block, and each SM
handles one or more blocks. A group of blocks is called a grid, and an entire grid
is handled by a single GPU. CUDA introduces a set of memory types. Global,
texture and constant memories are accessible by all threads of a grid and stored
on the GPU DRAM. Local memory is specific to a thread but stored on the
GPU DRAM. Shared memory is shared by all threads of a block and stored in
shared memory. Finally, registers are specific to a thread and stored on-chip.

3 Tesla is used by NVIDIA both as an architecture code name and a product range
name [25]. NVIDIA commercialized the Tesla architecture under the name GeForce
8 Series. When not specified, we refer to the product range name in the remainder
of the article.
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CUDA programs either run on top of the closed source NVIDIA CUDA runtime
or on top of the open-source Gdev [19] runtime. The NVIDIA CUDA runtime
relies on the closed-source kernel-space NVIDIA driver and a closed-source user-
space library. Gdev supports the open source Nouveau driver [28], the PSCNV
driver [33] and the NVIDIA driver. Both closed-source and open-source solu-
tions support the same APIs: CUDA programs can be written using the runtime
API, or the driver API for low-level interaction with the hardware [30]. Figure 2
illustrates the stack of CUDA and Gdev frameworks under Linux.

2.2 Information Leakage

Information Leakage in Cloud Computing Information leakage in cloud
computing has been extensively studied and related work mainly focus on dedu-



plication, side and covert channels. Harnik et al. [18] show the implications of
file-level deduplication in terms of covert and side channels; Suzaki et al. [39]
reveal that page-level deduplication can be used to infer the applications that are
running on other VMs; Owens et al. [32] infer the OS of other VMs using dedu-
plication. Ristenpart et al. [35] study the extraction of confidential information
via a coarse grained side channel on the data cache. Zhang et al. [46] exploit a
side channel on the L1 (CPU) instruction cache across VMs. Wu et al. [44] assert
that cache covert and side channels are not practical due to the distribution of
virtual cores among physical cores. They propose a new bus-contention based
covert channel, that uses atomic instructions to lock the shared memory bus.

Information Leakage in GPUs Using the CUDA framework, Di Pietro et al.
[12] show that GPU architectures are vulnerable to information leakage, mainly
due to memory isolation issues. The leakage affects the different memory spaces
in GPU: global memory, shared memory, and registers. Di Pietro et al. also
show that current implementations of AES cipher that leverage GPUs allow
recovering both plaintext and encryption key in the GPU global memory. Bress
et al. [9] consider using these vulnerabilities to perform forensic investigations.
Nevertheless, they note that we cannot guarantee that calls to the CUDA API do
not modify the memory. These two works begin to pave the way of GPU security,
however they do not evaluate information leakage by GPUs in the context of
virtualization that is characteristic of cloud computing.

2.3 GPU Virtualization

In virtualized environments, guest VMs are running isolated from each other
and managed by a privileged VM, while an hypervisor handles access to physi-
cal resources. Hardware-assisted virtualization (HVM) was introduced by Intel
in VT-x Virtualization Technology (and similarly by AMD in AMD-V) to over-
come the performance overhead of software virtualization of the x86 architecture.
Examples of commodity hypervisors include Xen and KVM, both of them sup-
porting HVM. KVM is implemented as a kernel-space device driver. Xen is a
bare-metal hypervisor, meaning that it runs directly on the host’s hardware. At
startup, Xen starts the privileged domain that is called Domain-0 (or dom0).
The other unprivileged domains are named domU.

Dowty et al. [13] classify GPU virtualization into frontend and backend vir-
tualization. Frontend virtualization puts the virtualization boundary at the host
or hypervisor level so that guests only interact with the GPU through soft-
ware. Solutions go on a continuum between device emulation and a split driver
model, also called API remoting. Backend virtualization is also called direct de-
vice assignment or PCI passthrough (both are equivalent). In their performance
evaluation, Vinaya et al. [42] concluded that direct device assignment mode is
the one that provides the best performance and fidelity.

Emulation When a GPU is emulated, the hypervisor implements in software
the features of existing, standard devices – regardless of the actual physical



devices. Device emulation does not require any change in the guest OS, which
uses standard device drivers. Emulation comes with non negligible overhead,
and is therefore not an option for GPUs that are used for high performance
computing. The closest approach to full GPU emulation is the one presented by
Dowty et al. in [13], which also includes characteristics of API remoting.

Split Driver Model The split driver model, also known as driver paravirtu-
alization, involves sharing a physical GPU. Hardware management is left to a
privileged domain. A frontend driver runs in the unprivileged VM and forwards
calls to the backend driver in the privileged domain. The backend driver then
takes care of sharing resources among virtual machines. This approach requires
special drivers for the guest VM. In the literature, the methods that use this
model virtualize the GPU at the CUDA API level [17,36,15], i.e., the backend
drivers in the privileged domain comprise the NVIDIA GPU drivers and the
CUDA library. The split driver model is currently the only GPU virtualization
technique that effectively allows sharing the same GPU hardware between sev-
eral VMs simultaneously [34,7].

Direct Device Assignment In direct device assignment, the guest VM has
direct control on the PCI device. Direct device assignment does not allow several
VMs to share the same GPU at the same time, and for the whole duration of
the VM. However, it allows several VMs to share the same GPU one after an-
other. Direct device assignment is the most commonly used GPU virtualization
mode and it is also used by GPU cloud providers such as Amazon Web Services.
To assign a device to a virtual machine, the hypervisor allows the VM to di-
rectly access the device’s PCI range. A hardware I/O Memory Management Unit
(IOMMU), such as Intel’s VT-d, thwarts Direct Memory Access (DMA) attacks
by preventing devices from accessing arbitrary parts of the physical memory.

Direct Device Assignment with SR-IOV Single Root I/O Virtualization
(SR-IOV) capable devices can expose themselves to the operating system as
several devices. The hardware device itself can be composed of several indepen-
dent functions (multiple devices) or multiplex the resources in hardware. This
technique therefore provides increased performance. In SR-IOV, the hypervi-
sor controls the assignment of each of the devices to a different guest VM. All
isolation mechanisms are implemented in hardware. This technology allows to
simultaneously share the same GPU among several tenants. NVIDA only very
recently introduced this type of technology as GRID VGX [31], however, we are
not aware of any deployment of SR-IOV GPUs by cloud providers.

3 The Security of GPUs in Virtualized Environments

In this section, we present our adversary model, as well as a study of the security
of the different GPU virtualization techniques, in terms of information leakage.



3.1 Adversary Model

The objective of the adversary is to learn some information about the victim.
This can occur directly by retrieving data owned by the victim in the memory
of the GPU, or indirectly through side channels. We assume that the adversary
has full control over a VM. In our case, the VM has access to a virtualized GPU.
We consider two cases:

– The serial adversary has access to the same GPU as the victim’s, before or
after the victim. She will seek for traces of data previously left in different
memories of the GPU. Our experiments, in Section 4 and following, consider
this particular adversary.

– The parallel adversary and the victim are running simultaneously on the
same virtualized GPU. She may also have direct access to memory used by
the victim, if memory management is not properly implemented. However,
as the parallel adversary shares the device with the victim, she may also
abuse some side channels on the GPU, possibly allowing her to recover useful
information.

The serial adversary can have access to the GPU memory in two different
ways. In our experiments, we outline two types of attacks that require different
capabilities for the adversary and differ in their results:

– In the first scenario, the adversary accesses portions of the GPU memory
through a GPGPU runtime. She does not need root privileges since she uses
perfectly legitimate calls to the CUDA runtime API.

– In the second scenario, the adversary accesses the GPU memory through
the PCI configuration space; we assume the adversary has root privileges,
either because she controls the machine or because she compromised it by
exploiting a known privilege escalation. This attack calls for a more powerful
adversary, but gives a complete snapshot of the GPU memory.

3.2 GPU Virtualization Technologies Impact on Security

Emulation Emulation is conceptually the safest virtualization technique. This
virtualization technique is the one that brings the most interposition, i.e., the
hypervisor is able to inspect, and possibly modify or deny, all guests calls. Emu-
lation also implements a narrow API, which limits the attack surface. Emulation
often does not rely on actual hardware. Therefore, information leakage – or side
channels – that is due to hardware sharing is effectively eliminated.

Split Driver Model The split driver model is prone to information leakage
and side channels enabled by the shared hardware. Furthermore, the backend
driver has to ensure the isolation of guests that share the same hardware. GPU
drivers have not been designed with that goal in mind, therefore, the backend
driver should completely be redesigned to address this. From an isolation, in-
terposition and attack surface perspective, the split driver model is somewhere



between emulation and direct device assignment. The API exposed to the guest
domain is limited, which makes the split driver model a safe approach at first
sight. Nevertheless, if the backend driver runs on the privileged domain and not
in a separate isolated driver domain, the device driver is part of the Trusted
Computing Base (TCB), along with the hypervisor and the hardware. As such,
a compromise of the backend driver can lead to the compromise of the entire sys-
tem and break isolation between guest VMs. Reducing the TCB to its minimum
is a common method to improve security. One approach is [38], that breaks the
monolithic Gallium 3D graphic driver to move a portion of the code out of the
privileged domain. More generally, reducing the TCB is a daunting task given
that the TCB of a virtualization platform is already very large [11]. Drivers are
well-known to be a major source of operating systems bugs [10]. GPU drivers
are also very complex, require several modules and have a large code base. In
the case of NVIDIA drivers, code cannot be inspected and verified since it is
closed source. Like any complex piece of software, GPU drivers can suffer from
vulnerabilities, such as those reported for NVIDIA drivers [1,2,3,4,5].

Direct Device Assignment This technique gives direct access to a physical
GPU, with a very limited level of interposition. The PCI passthrough is managed
by QEMU and the IOMMU, that become two targets for attacks. The attack
surface of the IOMMU is large since it has to handle every calls to the hardware:
Memory-Mapped Input/Output (MMIO), Programmed Input/Output (PIO),
DMA, interrupts. Although a piece of hardware is generally known as more
secure than a piece of software, the IOMMU is prone to attacks [27,43]. Side
channels are of less importance because the GPU is not simultaneously shared
by two tenants, but information leakage can still occur given that it is physical
hardware that is shared across different sessions.

Direct Device Assignment with SR-IOV This setup is recent and not yet
deployed by cloud providers, so no study has been conducted to assess its secu-
rity. Because they are designed for virtualization and for sharing, it is likely that
they will provide an isolation mechanism that will prevent direct information
leakage from a parallel adversary. However, if memory cleaning is not properly
implemented, it is the same situation as direct device assignment for a serial
adversary. Moreover, performance and resource sharing are antagonistic to side
channel resistance. Therefore we can expect that indirect information leaks will
be possible.

Full emulation and split driver techniques have low maturity and perfor-
mance, and SR-IOV GPUs are not currently deployed. Therefore, in the rest of
this paper we focus on data leaks in virtualization setups when GPUs are used
in direct device assignment mode, and in cloud setups. This effectively restricts
the adversary model to the serial adversary.



4 Experiments Setup

In this section, we detail the experiments that we conducted during our study.
We consider the serial adversary. We organize our experiments according to two
main parameters: the degree of virtualization, and the method used to access
the memory.

We pursue experiments with no virtualization, and with direct device assign-
ment GPU virtualization. We use a lab setup for both settings and a real life
cloud computing setup using Amazon. In our virtualized lab setup, we test two
hypervisors: KVM [21] and Xen [6]. For both of them, we used HVM virtualiza-
tion, with VT-d enabled. The administrative and guest VMs run GNU/Linux.
The cloud computing setup is an Amazon GPU instance that uses Xen HVM
virtualization with an NVIDIA Tesla GPU in direct device assignment mode.
The VM also runs GNU/Linux.

We pursue experiments accessing the memory with different GPGPU frame-
works under different drivers, as we explain in Section 5. We also access the
memory with no framework through the PCI configuration space, in a driver ag-
nostic way, as we describe in Section 6. To that extent, we build a generic CUDA
taint program and two search programs, depending on the access method.

1. Taint writes identifiable strings in the global memory of the GPU. It makes
use of the CUDA primitives cudaMalloc to allocate space on the global
memory, cudaMemcpy to copy data from host to device, and cudaFree that
frees memory on the device.

2. Search scans the global memory, searching for the strings written by taint.
The program that uses a GPGPU framework operates in the same way as
taint by allocating memory on the device. However, data is copied from
device to host before finally freeing memory. The other program uses the
PCI configuration space.

We first execute taint, then search, with various actions between these two exe-
cutions. An information leakage occurred if search can retrieve data written by
taint. Table 1 summarizes the experiments and their results.

5 Accessing Memory Through GPGPU Runtime

In this section, we detail our method and results to access the GPU memory
with the CUDA and Gdev runtimes, in three environments: Native, virtualized
and cloud.

4 We cannot guarantee that we end up in the same physical machine after releasing a
VM in the cloud setup.

5 The access through PCI configuration space needs root privilege.



Table 1: Overview of the attacks and results. The different actions between taint
and search are: (1) switch user; (2) soft reboot bare machine or VM; (3) reset
GPU using nvidia-smi utility; (4) kill VM and start another one; (5) hard
reboot machine. 3 indicates a leak, and 7 no successful leak. N/A means that
the attack is not applicable.

Actions between taint and search

Setup ECC 1 2 3 4 5

GPGPU runtime access

Native
on 3 7 7

N/A
7

off 3 3 3 7

Virtualized
on 3 7 7 7 7

off 3 3 3 3 7

Cloud
on 3 7 7

N/A4 N/A
off 3 3 3

PCI configuration space access

Native
on

N/A5 7 7
N/A

7

off 3 3 7

Virtualized – N/A5 7 7 7 7

Cloud – N/A5 7 7 N/A4 N/A

5.1 Native Environment

We conduct experiments similar to [9,12] with a Quadro Fermi GPU that does
not provide ECC for its memory. We validate information leakage on two frame-
works: (i) using the runtime API on top of the CUDA runtime and the NVIDIA
driver and (ii) using the driver API on top of the Gdev runtime and the Nou-
veau driver. We observed information leakage when users switch, when there is
a soft reboot and when the GPU is reset, i.e., in all cases between search and
taint except for the hard reboot. This indicates that the GPU maintains data in
memory as long as it is powered, i.e., anyone can retrieve data during this time.
The driver and framework do not impact memory leakage in this setting.

We now consider a Tesla Kepler GPU which provides ECC for its memory.
We found that the Tesla GPU has two options that impact the behavior of the
memory:

– Persistence mode: Enabling persistence keeps the driver loaded even when
no application is accessing the GPU and minimizes the driver load latency.

– ECC mode: When the Error Correction Code option is enabled part of the
dedicated memory is used for ECC bits, this reduces the available memory
by 12.5%. ECC protects register files, L1/L2 caches, shared memory, and
DRAM [29]. It takes effect after the next reboot, or device reset.

Table 2 shows in which cases we could observe an information leakage with a
user switch on the Tesla Kepler GPU in a native environment. The only case
where we could not observe any information leakage is when ECC is enabled and



Table 2: Information leakage with user switch between the execution of taint
and search, as function of ECC and persistence mode. Tested on a Tesla card in
a native environment. 3 indicates a leak, and 7 no successful leak.

ECC enabled ECC disabled

persistence off 7 3

persistence on 3 3

persistence is disabled. In this mode, the driver loads dynamically each time a
GPU application is executed. These experiments suggest that memory cleaning
is triggered by loading the driver when ECC is enabled. Furthermore, memory
is not zeroed with ECC and persistence disabled; this indicates that memory
zeroing in the ECC case is not implemented for security reasons but only to
properly support ECC mode.

In the case of a soft reboot of the machine or a reset of the GPU, the driver
is unloaded and reloaded independently of the persistence mode. There is no
information leakage between taint and search with ECC enabled in these cases.

5.2 Virtualized Environment

From a guest VM, we observed information leakage when switching user between
taint and search, which is the same behavior as in a native environment. The
soft reboot and the GPU reset are also giving different result depending on ECC,
showing information leakage when ECC is disabled, and no leakage when ECC
is enabled. Consistently with the native environment, there was no information
leakage after a hard reboot. Information leakage on these setups threatens the
confidentiality between users and applications of the same guest VM.

To investigate the role of the hypervisor, we are interested in knowing whether
a guest VM can retrieve data in the GPU memory left by a previous guest VM.
For that matter, we create a guest VM running NVIDIA driver on Ubuntu,
launch the taint program and then destroy the VM. Afterwards, we create an-
other guest VM and launch the search program. We could retrieve data on both
Xen and KVM, revealing that information has leaked. This result indicates a
clear violation of the isolation that the hypervisor must maintain between two
guest VMs.

5.3 Cloud Environment

Within the same guest VM, we obtain the same results as in the virtualized
environment. Information leakage occurs with ECC disabled when there is a
user switch, after a soft reboot of the VM or a reset of the GPU.

In the default configuration of Amazon GPU instances, ECC is enabled and
persistence is disabled. In accordance with our previous experiments, it means
that the memory is cleaned, and it is supposed to prevent a user from accessing



the memory of previous users. However, a user that deactivates ECC to have
more memory available (or uses a VM image configured this way) may not be
protected. Based on our observations, we imagine an attack where an adversary
rents many instances and disables ECC – or provides a custom image that dis-
ables ECC to numerous victims. Slaviero et al. [37] showed that it is possible
to pollute the Amazon Machine Image market with VM images prepared by an
adversary. The adversary then waits for its victim to launch an instance where
the ECC has been disabled. When the victim releases the instance, the adversary
tries to launch its own instance on the same physical machine. While this may be
difficult, Ristenpart et al. [35] showed that it is possible to exploit and influence
VM placement in Amazon. The adversary then runs the search program to seek
data in the GPU memory. We did not implement this attack as we would have
needed to rent a large number of instances, without any guarantee to retrieve
the same physical machine as a victim’s.

We therefore contacted Amazon security team, who mentioned that they
were already addressing such concerns in their pre-provisioning workflow, i.e.,
before allocating a new instance to a user. However, without further details on
how GPU memory is cleaned, there is no guarantee that Amazon performs this
correctly. In addition to this, in absence of formal industry recommendations,
we cannot exclude the existence of data leakage in other GPU cloud providers.

6 Accessing Memory Through PCI Configuration Space

The access method that leverages GPGPU runtime has the disadvantage of only
showing a partial view of the GPU memory, i.e., only what can be accessed via
the GPU MMU. In this section, we show a method to access the GPU memory
through the PCI configuration space, in a driver agnostic way.

6.1 Native Environment

There are two methods to perform I/O operations between the CPU and I/O
devices: Memory-Mapped I/O (MMIO) and Port-mapped I/O (PIO). The map-
ping of the device memory to the MMIO or PIO address space is configured in
the Base Address Registers (BAR), in the PCI configuration space. The PCI
configuration space is a set of registers that allow the configuration of PCI de-
vices. Reads and writes can be initiated by the legacy x86 I/O address space,
and memory-mapped I/O.

For NVIDIA GPUs, the BARs are obtained by a reverse-engineering work of
the open-source community. BAR0 contains MMIO registers, documented in the
Envytools git [14]. The registers are architecture dependent, but the area we are
interested in remains the same for the architectures Tesla, Fermi and Kepler.
The mapping at 0x700000-0x7fffff, called PRAMIN, can be used to access
any part of video memory by its physical address. It is used as a 1MB window
to physical memory, and its base address can be set using the register HOST MEM

at the address 0x1700. Figure 3 illustrates this access.



{
step n step n+1

{

@pramin_offset @pramin_offset

Fig. 3: Accessing GPU memory via PCI configuration space: PRAMIN mapping
is used to access 1MB of the GPU physical memory, at address configured in the
register host mem. We depict two consecutive steps in Algorithm 1 while loop.

Algorithm 1 Accessing memory through PRAMIN

pramin offset ← 0x700000
host mem ← 0x0
vram[size]
while i < size do

read(pramin offset, vram[i], 0x100000)
host mem ← host mem + 0x100000

end while

The access to video RAM is done through the following steps. First, HOST MEM

is set to 0x0 and we read the 1MB of PRAMIN – that way we are able to read
the first 1MB of the GPU’s physical memory. We then add 1MB to HOST MEM

and re-read PRAMIN. This step is done again until the whole memory has been
accessed. Algorithm 1 summarizes these steps. We use read and write functions
of the Envytools [14] (nva wr32 and nva rd8), that in turn use libpciaccess

to access the PCI configuration space.
Consistently with the experiments leveraging a GPGPU runtime, we observe

information leakage after a soft reboot and a reset of the GPU. There is no
information leakage after a hard reboot. Changing user does not apply in this
setup since we need to be root to access the PCI configuration space.

Accessing memory through PCI configuration space gives a complete snap-
shot of the GPU memory and bypasses the GPU MMU. The advantage of such



method is that it is capable of bypassing some memory cleanup measures imple-
mented at the applicative level. We discuss this aspect in Section 7.

6.2 Virtualized and Cloud Environment

Xen provides I/O virtualization by means of emulation for its HVM guests with
the QEMU device model (QEMU-dm) daemon that runs in Dom0. When a
guest is configured with a device in direct device assignment mode, QEMU-dm
reads its PCI configuration space register, and then replicates it in a virtual PCI
configuration space. QEMU-dm maps MMIO and PIO into the guest memory
space, and configures the IOMMU to grant the guest OS access to these mem-
ory regions. However, QEMU-dm emulates some configuration space registers
like BAR for security reasons, so that an adversary cannot change the memory
mapping of the device to another device attached to another VM, or to the
hypervisor. Other registers like command register are not emulated.

Our access method leverages BAR registers to access the GPU memory. We
tested the method on our Xen setup and obtained garbage (series of 0xffff val-
ues), confirming that the access to the registers are emulated, which prevented
us from effectively accessing the memory. The results are the same for Amazon
GPU instances. These setups are then showing no information leakage. To cir-
cumvent the protection of BAR registers, an adversary may try to attack the
virtualization mechanisms themselves.

7 Countermeasures

We divide the possible countermeasures in three categories: changes in existing
runtimes, steps that can be taken by cloud providers, and those that can already
be initiated by a user using only calls to existing APIs.

Changes to Existing Runtimes Di Pietro et al. [12] suggest an approach to
be implemented in runtimes. The solution is to zero-fill buffers at allocation time,
as it is done when an operating system allocates a new physical page of memory
to a process. This solution targets an adversary that uses GPGPU runtime to
launch her attack, however, it does not protect from an adversary that accesses
memory through PCI configuration space, since she will not allocate memory.
In this case, it would be better to clear memory at deallocation time. In both
cases, zero-filling buffers entails performance issues as the memory bandwidth is
generally a bottleneck for GPGPU applications. Di Pietro et al. assess the impact
of the cudaMemset function that is used for zeroing buffers. The overhead turns
out to be linearly proportional to the buffer size.

Cloud Providers Cloud providers can already take measures to protect their
customers. The necessary steps before handing an instance to a customer include
cleanup of the GPU memory. This is the approach that appears to be taken by
Amazon, which seems to implement proper memory cleaning and does not rely
solely on a side effect of having ECC enabled by default.



Defensive Programming In the absence of the two types of countermeasures
above, a security-conscious programmer that writes his own kernels and can
accept a performance penalty can clear the buffer before freeing memory with
a function such as cudaMemset. If the end-user can not modify the program,
he should erase the GPU memory when finishing an execution on a GPU. This
countermeasure seems trivial, nevertheless its practical implementation can be
difficult due to the complicated memory hierarchy present in GPUs (e.g., access
mechanisms depend on the type of memory). A standalone CUDA program
that cleans the memory would allocate the maximum amount of memory, and
then overwrite it (e.g., with zeros). However, this solution relies on the CUDA
memory manager, which does not guarantee the allocation of the whole memory.
Portions of memory risk not to be properly erased because of fragmentation
issues. We built an experiment to illustrate this: We run a CUDA program for
some time, then we stop it to run the CUDA program that cleans the memory.
We finally dump the memory via PRAMIN to access the whole memory. We
clearly recovered a portion of the memory that was not cleaned by the CUDA
program, demonstrating clear limitations of this countermeasure.

A practical solution for NVIDIA Tesla GPUs that benefit from ECC memory
is to enable ECC and reload the driver, or to reset the GPU when ECC is enabled.
As we saw in our experiments Section 5.1, these sequences of actions clear the
memory.

8 Conclusions

We evaluated the confidentiality issues that are posed by the recent advent of
GPU virtualization. Our experiments in native and virtualized environments
showed that the driver, operating system, hypervisor and the GPU card itself
do not implement any security related memory cleanup measure. As a result, we
observed information leakage from one user to another, and in particular from
one VM to another in a virtualized environment. Amazon seems to implement
proper GPU memory cleaning at the provisioning of an instance; we could thus
not confirm any information leakage from one Amazon instance to another. How-
ever, because of the general lack of GPU memory zeroing, we cannot generally
exclude the existence of data leakage in cloud computing environments.

The rise of GPGPU increases the attack surface and urges programmers and
industry to handle GPU memory with the same care as main memory. For this
matter, industry should include GPU memory cleaning in its best practices. We
provided a set of recommendations for proper memory cleanup at the various
layers involved in GPU virtualization (application, driver, hypervisor).

In the future, GPU virtualization will move from sequential sharing of a GPU
card to simultaneous sharing between several tenants. Proper memory isolation
will become even more challenging in this context, and we plan to study this
aspect in future work.
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