
Reproducing Spectre Attack with gem5
How To Do It Right?

Pierre Ayoub
pierre.ayoub@eurecom.fr

EURECOM
Sophia Antipolis, France

Clémentine Maurice
clementine.maurice@inria.fr

Univ Lille, CNRS, Inria
Lille, France

ABSTRACT
As processors become more and more complex due to performance
optimizations and energy savings, new attack surfaces raise. We
know that the micro-architecture of a processor leaks some infor-
mation into the architectural domain. Moreover, some mechanisms
like speculative execution can be exploited to execute malicious
instructions. As a consequence, it allows a process to spy another
process or to steal data. These attacks are consequences of funda-
mental design issues, thus they are complicated to fix and reproduce.
Simulation would be of a great help for scientific research for micro-
architectural security, but it also leads to new challenges. We try to
address the first challenges to demonstrate that simulation could
be useful in research and an interesting technique to develop in the
future.

CCS CONCEPTS
• Security and privacy → Hardware attacks and countermea-
sures; Hardware security implementation.

KEYWORDS
Reproducibility, Micro-architecture, Branch Predictor, Cache Side-
Channel, Flush+Reload, Transient Execution Attack, Spectre, Simu-
lation, gem5
ACM Reference Format:
Pierre Ayoub and Clémentine Maurice. 2021. Reproducing Spectre Attack
with gem5: How To Do It Right?. In 14th European Workshop on Systems
Security (EuroSec ’21), April 26, 2021, Online, United Kingdom. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3447852.3458715

1 INTRODUCTION
Modern processors use various micro-architectural mechanisms to
increase their performance. Attacks that exploit these mechanisms
are called micro-architectural attacks. Caches, which are used to
store recently accessed data for quick accesses, have been exten-
sively studied for their timing leakage like in the Flush+Reload
attack [18]. By differentiating cached and uncached data through
timing measurements, an attacker can spy another process. Spec-
ulative execution is used to speculate on the next instruction to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSec ’21, April 26, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8337-0/21/04. . . $15.00
https://doi.org/10.1145/3447852.3458715

execute when the instruction flow is uncertain, particularly on
branch instruction for branch prediction [13] [15]. In 2018, a new
class of attacks has been released, namely Spectre [7], which is
able to steal protected data by exploiting the speculative execution
mechanism of a processor.

Since its disclosure, many variants of the Spectre attack have
been discovered and various countermeasures have been developed,
both software or hardware-based [3]. Unfortunately, currently none
of them have been widely adopted, mainly due to their performance
overhead or the implementation difficulty.

In this paper, we investigate a novel approach in the field of
micro-architectural attack development, which is to use the state-of-
the-art simulator gem5 to reproduce and study the Spectre attack.
These attacks are closely tied to the hardware implementation,
thus, their reproducibility on a simulator is not trivial. We are also
interested in the accuracy of the simulation. Our goal is to explore
the benefits of the simulation for security researchers. The main
contributions of our paper are:

• From our experiments, we provide several guidelines that we
deem important for micro-architectural security research, in
both attack development and reproduction (Section 4).

• We demonstrate the usage of gem5 to develop new tech-
niques for helping attack development and understanding,
like visualizing the micro-architectural state of a processor
under attack (Section 5).

• We demonstrate the reproducibility of Spectre on a cycle-
accurate simulator and evaluate its accuracy by comparing
it to experiments on real hardware (Section 7).

• We discuss the requirements of gem5 to simulate those at-
tacks and the parameters that affect their efficiency (Section 8).

2 BACKGROUND
2.1 Caches
The latency when loading a word from the main memory is too
high compared to the computation speed of the processor, thus
the memory is organized into a hierarchy, with smaller but faster
memories close to the processor. A cache memory is a small, fast,
and expensive memory which aims at keeping more often used
data close and quickly accessible. A cache hit happens when the
processor finds the requested data in the cache, otherwise it is
called a cache miss. The hierarchy is divided into several levels,
often between 2 and 4 – denoted L1 to L4. The Last-Level-Cache
(LLC) is the closest level to the main memory. Caches are organized
into multiple lines, which are the smallest unit to load or flush data
from the cache, often equal to 64 consecutive bytes. A fixed number
of lines are grouped into cache sets, which corresponds to the cache

https://doi.org/10.1145/3447852.3458715
https://doi.org/10.1145/3447852.3458715

EuroSec ’21, April 26, 2021, Online, United Kingdom Pierre Ayoub and Clémentine Maurice

associativity. A cache can be accessible from only one core, called
a private cache, or from multiple cores of the processor, called a
shared cache. In multi-core processors, the LLC is often shared
between cores. Caches can be inclusive, which means that a level
𝑛 of cache contains all the data and instructions of level𝑚 < 𝑛, in
addition to its own exclusive content since it is larger.

2.2 Branch Prediction
When the processor does not know which instructions it needs to
execute next, it may use an optimization called speculative execu-
tion, which consists in speculatively executing one of the possible
instruction streams. If the speculation was wrong, then the pipeline
is flushed, and we say that these instructions have been squashed.

Branch prediction is one form of speculative execution, where the
processor speculates on the result of encountered branches [13] [15].
The branch predictor, which is an internal component of the pro-
cessor, guesses the outcome of a branch instruction, e.g., if the
outcome of a conditional branch is taken or not taken, even before
the evaluation of the condition. Different branch types exist (uncon-
ditional and indirect branches) as well as different prediction types
(instruction prediction, outcome prediction and target prediction).

The branch predictor uses some structures, the important one
in this paper being the Pattern History Table (PHT). First, a history
pattern is a sequence of 𝑛 bits indicating, for each bit, the taken
or not taken direction for the last 𝑛 executed branches in fetch
order [19]. A saturating counter is a bit sequence – between 2 and 4
bits – incremented (resp. decremented) when a branch is taken (resp.
not taken). The counter’s uppermost bit is used as the prediction
– set to 1 means that the branch was previously taken at least 1

2
time. The PHT is an array indexed by a bit sequence identifying a
scenario – a history pattern –, where each entry stores a saturating
counter used as the prediction for the outcome of the branch.

There are many algorithms and architectures for branch predic-
tors. We briefly present the two architectures used in the remainder
of this paper. The two-level global history-based predictor performs
two steps for each branch prediction: (1) Indexing the PHT accord-
ing to the current history pattern, which gives the outcome of the
branch. (2) Predicting the address based on the predicted outcome.
“Global history-based” means that the PHT is indexed by a unique
history pattern stored in a shift register, which includes all encoun-
tered branches, being the simplest form of two-level predictors. The
Bi-Mode branch predictor [9] is identical to the previous one except
that it separates mostly-taken and mostly-not-taken branches into
two different PHTs to increase prediction’s efficiency.

2.3 Spectre
A transient instruction refers to an instruction partially or com-
pletely executed by the processor. It can affect the processor’s micro-
architectural state, but leaves its architectural state without any
trace of its execution. The Spectre variant we studied (Spectre-v1,
a.k.a. Spectre-PHT-SA-IP) [7] exploits speculative execution, more
precisely, it tricks the branch predictor on a conditional branch’s
outcome. It uses the PHT of the branch predictor to induce a vic-
tim executing a conditional branch with a malicious and unautho-
rized parameter. The unauthorized instructions modify the micro-
architectural state in a way that is dependent of the targeted value

if (x < array1_size)
y = array2[array1[x]];

Listing 1: Conditional branch targeted by Spectre.

– the secret to recover. After the transient execution, the attacker
probes the micro-architectural domain using a covert channel and
infers the targeted value from it. The covert channel can exploit
any primitive, however, Spectre is frequently exploited with cache
covert channels for their efficiency, particularly Flush+Reload [18].

Consider the branch in Listing 1, where the attacker is able to
make the victim execute the snippet, control the x parameter and
have access to array2. Several steps are needed to exploit the PHT:
(1) Setup. Setup the covert channel by flushing all elements of
array2 from the cache for Flush+Reload. (2) Training. Execute
the branch a lot of time with a valid x, thus increasing the PHT’s
saturating counters at their maximum for this branch. (3) Encoding.
Send amalicious x, such as x = &secret - array1, so the processor
will execute transiently the array2[array1[x]] memory access.
(4) Recovering. Recover the value from the covert channel. For
Flush+Reload, load every value of array2 and measure the induced
latency with a timer. When a cache hit is detected for index i, i =
secret because it has been cached during the transient execution.

2.4 gem5
gem5 is a state-of-the-art cycle-accurate computer simulator [1],
meaning that it simulates hardware components on a cycle-by-cycle
basis, instead of simulating the instruction-set of an architecture.
It is used both in the academic and industry world for research
and development of new hardware technologies, and ARM is a
well-supported architecture. It is made of two parts: (1) The C++
core where the logic of the components is programmed; (2) The
Python interface linked to the C++ objects in order to interconnect
and easily configure these elements. Each object has “ports” to send
or receive packets from other object.

To the best of our knowledge, there is no systematic review that
compares simulators applied to security research. However, gem5
meets our requirements to simulate our attack – cycle-accurate,
modular, ARM architecture, caches, out-of-order execution, branch
prediction – and is widely used.

3 RELATEDWORK
To the best of our knowledge, there is little to no existing literature
that highlights the best practices in micro-architectural security
research in terms of reproducibility, neither in native environments
or with simulators like gem5. The closest to our simulation work is
a Low-Power’s blog post [12] that reproduces the Spectre attack on
gem5. It demonstrates that Spectre works on the simulator, with a
quick discussion on branch predictors and compilers effects. In this
paper, we try to go deeper by proposing new research techniques
and evaluating the accuracy of the simulation. While the attack
side is not well-studied on gem5, the countermeasure side already
benefits from simulators, as many papers use gem5 to develop and
validate their countermeasures [11]. To choose our gem5 processor
in our simulation, we follow Endo et al. [4] who simulated an ARM

Reproducing Spectre Attack with gem5 EuroSec ’21, April 26, 2021, Online, United Kingdom

Cortex-A8 and an ARM Cortex-A9 processors with gem5 and an
out-of-order processor, as well as Gutierrez et al. [6] who simulated
an ARM Cortex-A15 processor with gem5 and the same processor
in a survey of errors categorization using gem5.

4 GUIDELINES ON MICRO-ARCHITECTURAL
ATTACK DEVELOPMENT AND
REPRODUCTION

During our study, we were confronted to some proof-of-concept
implementations with reproducibility problems, that might have
been avoided with more “best practices” in security research. We
encourage any security researcher to follow our generic guidelines,
both for helping other researchers to reproduce their work and to
reproduce the work of others.

4.1 Development
These general guidelines apply during the development of an attack,
to improve reproducibility in the end. At the end, we also provide
two additional guidelines specific to the development of timing
covert channels and transient execution attacks.

Compiler version. Two versions of the same compiler can produce
very different machine code from the same source code. Generally,
the reason lies into all the optimization mechanisms that are imple-
mented. As a good research practice, we suggest to always specify
the compiler version, and to use the same version as the author(s)
of the original work if a problem arises.

Compiler optimizations. Even more than compiler versions, com-
pilation flags could completely change the outcome of an attack,
both increasing or decreasing efficiency. After having experimented
with attacks working with a flag and not with another, working
on a system and not another because of an optimization, we con-
sider compilers optimizations harmful for security research and
reproducibility. We suggest to always disable most of the optimiza-
tions mechanisms of the compiler in a research perspective, except
when the goal is to maximize the throughput on a specific imple-
mentation for a specific architecture. If a researcher observes that
a particular optimization of GCC is required to make an attack
work, we strongly suggest using the -fopt-info compilation flag
to understand and isolate this optimization.

Manual optimizations. Manual optimizations are important for
some attacks. For instance, a Spectre version targets the Return
Stack Buffer (RSB) of the branch predictor, a structure used to hold
and predict the address for a return instruction based on the jump
for the function call. Thus, inlining some functions allows to unload
the RSB and hence the branch predictor, leading to a more efficient
manipulation of the RSB. In those cases, we prefer to manually
optimize the code instead of having the compiler doing it. Such
manual optimizations have to be found via experimentation.

Prefetcher. The prefetcher is a processor’s component used to
load memory elements into the cache even before they are used by
a program. Prefetching un-accessed elements in the cache can skew
the result of the cache covert channel. Disabling the prefetcher is
generally difficult as it requires special privileges during boot time.
Instead, the best method is to use a mixed-up access pattern to

prevent the prefetcher to detect the next memory element that will
be accessed, e.g., for i from 0 to 255, index a table with the index
i_mix = ((i * 167) + 13) & 255 [7].

Re-ordering. An instruction, if no precaution is taken, can be
delayed or moved into the instruction flow both by the compiler
and the processor – statically at compilation time or dynamically
at runtime, respectively. Therefore, it is important to ensure that
instructions are executed at the right moment, especially for flush
instructions that are critical for the covert channel. In order to
verify this at runtime, gem5 can be a great help (Section 5). For
the compiler step, the developer should take precautions by using
barriers if one instruction is absolutely dependent of a previous one
inside the micro-architectural domain (like cache state): (1) The
dsb instruction on ARM, equivalent of the Intel mfence instruction,
which is a memory barrier; (2) The isb instruction on ARM, which
is an instruction barrier.

Timer for covert channel. The timing method corresponds to the
technique used to measure the latency between two memory ac-
cesses for the cache side-channel part. We independently found the
same results as Moritz Lipp et al. [10] and recommend approaches
(1) and (2): (1) The POSIX clock_gettime() function provides a
nanosecond resolution timer and is the easiest method to use. (2) A
counter thread [10], where we create a dedicated parallel thread
incrementing a counter indefinitely, provides an approximation of
a cycle-accurate timer while being more complex to use. (3) The
PMCCNTR_EL0 register, an ARMv8 PMC, provides a cycle-accurate
timer, but its usage is unrealistic as it needs a special kernel mod-
ule, thus, root permissions. (4) The perf_event interface, a Linux
API [17], should provide a cycle-accurate timer, but it was the worst
method experimentally – we suppose that the overhead was too
heavy for our cache side-channel.

Transient execution window. It corresponds to the time slice – or
more precisely, the number of cycles – where (potentially malicious)
instructions are executed in the transient domain, i.e., executed
speculatively then discarded when the speculation was wrong. For
instance, in Spectre-PHT, this time depends on the time taken
to compute the condition of the targeted branch. To make the
computation of the attacked branch condition as long as possible,
we can use slow operations like a division. It will increase the
reproducibility of the attack across different systems. Note that in
a real attack scenario, we do not choose explicitly the instructions
of the targeted branch.

4.2 Reproducibility by Environment Control
These guidelines apply to maximize the chances of reproducing an
attack by controlling the attack’s environment.

Pinning. This technique prevents the scheduler of the operat-
ing system to change the execution core of one process (using the
taskset command on Unix systems). By default, executed pro-
cesses switch from one core to another during their life-time. For
instance, pinning the Spectre process can improve the efficiency of
the covert channel part, because if one process performing a cache
attack is switched to another core, depending on the processor

EuroSec ’21, April 26, 2021, Online, United Kingdom Pierre Ayoub and Clémentine Maurice

micro-architecture and the attacked level of cache, the targeted
cache can be changed without the process noticing.

Page size. The cache side-channel implementation (Flush+Reload
in our case) tries to spread its probe array over multiples pages in
order to defeat the cache prefetcher, since many do not look further
than the page size in memory. Page size depends on the kernel and
the processor architecture, but 4 kB is very common, thus the size is
often hard-coded in the implementation – but it could be different.
However, a functionality called Huge Page allows the usage of pages
larger than 1 MB or 1 GB, and could be enabled transparently in
the system.1 If our cache side-channel rely on a specific page size
to work, to avoid impacting its efficiency we should disable this
functionally by modifying the kernel’s parameters.2

Frequency. All modern processors adapt their frequencies to the
current workload in real time, which corresponds to frequency scal-
ing – often referenced as DVFS. If the frequency changes between
two latency measurements, the latter could become irrelevant if
the frequency value is correlated to the latency. This feature should
be disabled using cpupower3 in Linux.

Mitigations. Software or hardware mitigations can be deployed
on a system. In our case, since there is currently no hardware protec-
tion to defeat Spectre, Linux kernel developers have implemented
software mitigations to defeat a Spectre attack against the kernel.
These mitigations should not interfere with an attack against a user
process. Verifying enabled mitigations can be achieved by a lookup
into some files exposed by sysfs.4 In our system, amitigation called
__user pointer sanitization was enabled, which consists in
disabling speculative execution for some sensitive pointers that are
passed to the kernel by the user during a system call, which could
be an attempt of a speculative bound check bypass [16].

5 BENEFITS OF (PIPELINE) VISUALIZATION
Some simulation techniques can enhance micro-architectural secu-
rity research. Section 3 presents papers that successfully used gem5
to develop and validate countermeasures. For offensive security,
simulation offers full control and monitoring over each element
of the system. For example, the pipeline visualization is a simula-
tor feature which aims to record all instructions that flowed into
the pipeline of the simulated processor. Using an external program
named Konata [14], we can graphically visualize all the instructions.
For each of them, we can identify the cycle of each processing step
and see if an instruction has been fetched and committed, flushed
or speculatively executed. Using this, we have been able to observe
multiple Spectre attack scenarios:

(1) The attack works as expected, we can visually see the mali-
cious transient memory read happening, allowing to have a
better understanding of how the attack works.

(2) The training of the branch predictor is not successful, which
leads to no transient instruction executed. Being able to

1Huge page check on a Raspberry Pi: sudo modprobe configs && zcat
/proc/config.gz | grep -i k_page
2Huge page disabling on a Linux kernel: add transparent_hugepage=never in
/boot/cmdline.txt
3With root permissions, DVFS can be disabled issuing the following command:
cpupower frequency-set -g performance
4The path of the file being /sys/devices/system/cpu/vulnerabilities/spectre_v{1,2}

observe that is a strong clue for a researcher, since this fact
is normally completely hidden from the programmer. This is
useful to understand why the attack could fail and identify
one reason from the multiple possible ones.

(3) Konata also allows to visualize the order in which instruc-
tions are executed. It can be used to identify then solve the
re-ordering problem mentioned in Section 4.1.

This pipeline visualization is an easy-to-use tool to obtain advice
about the micro-architectural behavior of the attack. gem5 is able
to record everything and output the state of any component in the
system, e.g., the structures of the branch predictor or the cache.

6 SETUP
The first phase of our work is the implementation of Spectre on a
native system. The goal is to have an attack that works correctly
and meets special requirements for gem5. We had to do this because
the reference implementation [2] was not working properly on our
native system. The second phase is the replication of the attack on
a simulated system using gem5, which involved the development
of our own simulation. We call a gem5 model faithful when the
number of simulated component and mechanisms matches the real
hardware, and call accurate a simulation run when some metrics
on the simulation matches the same metrics on the real hardware.

For the first phase with the native system, we work on a Rasp-
berry Pi powered by an ARM processor. We chose this board be-
cause it is inexpensive and representative of what we can find in
the wild. We chose an ARM processor because this architecture
is well-supported on our simulator (better supported than x86).
More precisely, we used: (1) Raspberry Pi v4 Model B Rev 1.1 as
our main board; (2) ARM Cortex-A72 processor, implemented in
the Broadcom BCM2711 SoC, as an ARMv8-A processor with an
inclusive LLC; (3) Kali Linux (stable v2020.2a) in the 64-bit flavor
as operating system; (4) Linux v4.19.118-Re4son-v8l+ as a kernel;
(5) GCC v9.3 as a compiler.

The second phase was under our own simulation, with a system
simulated by gem5 v20.0 with the ARM64 Linux kernel v4.18.0 and
the 64-bit Linaro Minimal v7.4.0 (based on Ubuntu) images, both
provided by gem5’s developers.

7 IMPLEMENTATION
In this section, we explain our implementation and design choices
during our work. The implementation details, screenshots of visu-
alization, code and experiments are available.5

7.1 Implementing the Spectre Attack on ARM
The reference implementation – which do not follows our guide-
lines – of Spectre for ARM [2] was not working properly on our
hardware. Indeed, it was relying on compiler optimizations to work
correctly. Moreover, towards the goal of reproducibility, we need a
specific implementation to fit our requirements, which are: (1) Sta-
ble results, meaning that the number of retrieved bytes should be
comprised between a reasonable interval; (2) An implementation
that follows of our guidelines, in particular no advanced compiler
flags as we do not want to rely on a particular compiler mechanism

5https://pierreay.github.io/reproduce-spectre-gem5/

https://pierreay.github.io/reproduce-spectre-gem5/

Reproducing Spectre Attack with gem5 EuroSec ’21, April 26, 2021, Online, United Kingdom

for our attack to work, unlike the other implementations we tried;
(3) Customizable attack parameters at runtime, allowing parameter
exploration for efficiency; (4) Usable in the same way both on native
hardware and on gem5 to compare them; (5) Metrics output, which
are numbers used to compare simulation accuracy (Section 8).

Conceptually, we used the same algorithm implemented in the
original Spectre-PHT proof-of-concept [7], which is an x86 im-
plementation, and we ported it to ARM. Then, we applied all our
guidelines of Section 4.1, which was a critical point of our imple-
mentation to make it work. To ensure the cache miss threshold
calibration for Flush+Reload, i.e., the number of cycles where we
distinguish the latency of a cache hit from a cache miss, we used
the code developed for the Cache Template Attacks [5] which allows
to obtain the distribution of latencies for cache hits and misses. We
used the clock_gettime() function as a timer for its efficiency and
availability. To measure our metrics, we used counters incremented
during our attack as well as the perf_event Linux kernel interface
for micro-architectural counters. This interface provides access to
the Performance Monitoring Unit (PMU) of processor from the user
land. This implementation works properly both under the native
ARM system and gem5.
7.2 Implementing an ARM gem5 System
In order to reproduce the attack, we need a processor with at least:
(1) A speculative execution mechanism with a branch predictor
to execute transient instruction; (2) A cache to observe a timing
difference when accessing the data.

We derive the DerivO3CPU class for our simulated processor.
This is an out-of-order processor with a 7-stage pipeline (fetch,
decode, rename, issue/execute/writeback, commit). It allows using
several caches and a branch predictor. We disqualified the HPI class
which is a high-performance in-order processor, since transient
execution attacks target modern out-of-order processors.

gem5 supportsmultiple simulationmodes.We use the full-system
simulation mode, which is the more faithful and demanding in com-
putational power. We define all the simulated hardware objects
to simulate a complete and working operating system via Python
scripts. System-call emulation, where system calls are implemented
by gem5 itself and not by a native kernel, is not suitable for a
faithful experiment. We derive the Cache class for our caches and
ArmDTB / ArmITB for the TLB. We derive the ArmSystem class as a
system class to handle the ARMv8 architecture and extensions. We
use the VExpress_GEM5_V1 class (simulate the RealView VExpress
platform) to handle memory mapping, interrupts and GIC, and two
PciVirtIO to handle operating system and workload images as
VirtIO PCI block device.

We use perf_event to collect metrics. To reproduce it on the
gem5 system, we had to patch the gem5 source code to handle
this Linux interface. This patch has been included in gem5 such
that the latest release handles perf_event correctly. We use the
ArmPMU class configured with an ArmPPI interrupt to access the
PMU’s counters.

We analyzed gem5’s implementation of 5 branch predictors, but
in the remainder we only describe our configuration. To match
as closely as possible our native processor’s branch predictor, we
choose to use the gem5’s two-level global history-based bi-mode pre-
dictor. Despite the fact that the Bi-Mode predictor separatesmostly-
taken and mostly-not-taken branches into two different PHTs, the

Table 1: Ratio between gem5 and Raspberry Pi runs for each
metric. A value below 1 means that gem5’s metric is lower
than the Raspberry Pi’s metric.

Metric Mean Standard Deviation
Retrieved Bytes 1.05 NaN
Iterations 0.57 3.81
Cycles 0.31 2.12
Cache Misses 584.08 4581.02
Mispredicted Branches 0.99 2.41

attack trains the attacked branch as a mostly-taken branch. Conse-
quently, this branch should only be predicted from the mostly-taken
PHT, hence, our Bi-Mode predictor acts mostly like the two-level
global history-based branch predictor of our native processor. We
verify this experimentally in Section 8.

After configuring several parameters – caches, branch predictor,
TLB, pipeline –, we obtain a system that reproduces broadly our
Raspberry Pi with a 4-core processor and two levels of caches
– private L1D and L1I and shared L2. Moreover, our simulated
processor should perform similarly to our native one for our attack.

Workflow. We prepare 3 images: (1) Kernel image; (2) Operating
system image; (3) Workload image, dynamically generated with a
script, containing the binary of the attack and experiment scripts.
We boot-up the system once with a fast and unfaithful processor
(AtomicSimpleCPU). Then, we take a snapshot of the system state
and stop the simulation. This snapshot can be then used at any time.
We restore the simulation at the previous point with a detailed and
slow processor (DerivO3CPU), this is called a fast-forwarding. We
connect to the simulated system using telnet, mount the workload
image, and launch the experiment script. Results are then displayed
on the terminal.

8 EVALUATION
Reproducing an attack is a first step, but the main question is: “How
much is the reproduced attack accurate to the original one?”. Indeed,
to be useful in security research, the simulation has to be accurate.

Metrics are numbers used to compare runs between the na-
tive hardware and the gem5 simulation. They are also useful to
understand the attack behavior, e.g. allowing to understand if an
under-efficiency of the attack is caused by the cache or the branch
predictor. Note that the choice is limited, both in terms of num-
ber and nature, mainly due to micro-architectural constraints. We
choose to monitor: (1) Number of correctly retrieved bytes by the
attack; (2) Number of iterations to retrieve the given number of
bytes; (3) Number of cycles taken (quantifying the time taken);
(4) Number of cache misses occurred during the attack; (5) Num-
ber of mispredicted branches. The last two are micro-architectural
counters monitored during the core of the attack – flushing, specu-
lative execution, covert-channel –, while the others are user-land
counters. For each run of an attack, 5 metrics are monitored and
collected. We performed 497 runs on the Raspberry Pi and 10 runs
on the gem5 system. This difference can be explained by the time it
takes for one run on each system: a few minutes on the Raspberry
Pi, between 1 and 5 hours on gem5, depending on the configuration.

Table 1 describes our results. The ratio of eachmetric is computed
by dividing the mean or the standard deviation observed on the

EuroSec ’21, April 26, 2021, Online, United Kingdom Pierre Ayoub and Clémentine Maurice

gem5 system by the one observed on the Raspberry Pi system. The
distribution of our metrics is more disparate on the gem5 system
(higher standard deviation), surely due to the low number of runs.
Retrieved Bytes Since the attack retrieved every bytes for each
run on the gem5 system (40 bytes per run), the standard deviation
was equal to 0, hence the NaN notation. The efficiency of the attack
on gem5 is close to the reality, with less noise in the system and
more predictable results.
Iterations and Cycles The attack on gem5 performs nearly 2
times fewer iterations and approximately 3 times fewer cycles than
the native system.
Cache Misses We observe many more cache misses on gem5 than
on our native system. We believe that this is an internal problem
of communication between the real number of cache misses in
gem5 and the number exposed via perf_event, but this needs
more investigation to determine if the observation is correct or if
the tool is faulty.
Mispredicted Branches Mispredicted branches are the most im-
portant metric. We see that gem5 has nearly exactly (0.99) the same
number of mispredicted branches than our native system, in aver-
age. It means that our configuration for the gem5 branch predictor
successfully represents the branch predictor of our ARM processor
– at least, for this attack.

9 DISCUSSION
Simulation is successfully applied in numerous scientific fields, after
addressing the challenges of usability and accuracy. If simulation be-
comes widely used, thus it would be easy to reproduce older attacks
and to study them, e.g. for countermeasures development. Indeed,
when hardware countermeasures and newer processor architec-
tures will be released, it could become impossible to reproduce
an attack. Moreover, not only the replication side will benefit of
it but also the offensive side. With faithful models, a researcher
could explore and discover new vulnerabilities with a simulated
model, then apply them to the real world. We imagine several useful
application, for instance it could be powerful to apply parameters
enumeration: supposing that we develop a new attack idea that
could work only under specific hardware conditions, then we can
try different hardware parameters to discover the vulnerable ones.

There are still some limitations, as our work remains to be gen-
eralized on other kind of hardware. Moreover, the runs on gem5
for an attack are very slow, and there is still less noise on the gem5
system than the native one, which impacts the practicability and
the fidelity of the system.

10 CONCLUSION
In this paper, we first described how to increase reproducibility
in security research, further we believe that fully reproducible
builds are a promising way of doing it [8]. We have shown how to
start micro-architectural security research with a cycle-accurate
simulator, namely gem5. We saw that it is possible to simulate
micro-architectural attacks, moreover, that it could be accurate
comparing it to a native machine.

We can imagine several ways to use gem5 in order to find new
attacks and countermeasures, but also to help in attack and counter-
measure implementation and understanding. We can identify three

future directions on gem5 for security research: (1) Visualization is
a very powerful technique to understand the micro-architectural
behavior, and this knowledge can be directly applied to security.
Currently, we can conveniently observe the pipeline, but being able
to visualize the state and history of the branch predictor or the
caches would also be very effective. (2) We can improve model’s
faithfulness by implementing missing components to make a spe-
cific attack work. These components are still to identify by future
research. (3) We can improve the possibilities given by a gem5 sim-
ulated system by fixing – just like we did with perf_event – or
implementing missing security features. For instance, TrustZone
and SGX are still unsupported, but studying the micro-architecture
impact on these features under gem5 could be a great advantage.

This work benefited from the support of the DGA and the project
ANR-19-CE39-0008 ARCHI-SEC.

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News (2011).

[2] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. [n.d.].
TransientFail Repository. IAIK. https://github.com/IAIK/transientfail Consulted
on 2020-08-30.

[3] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
Systematic Evaluation of Transient Execution Attacks and Defenses. In USENIX
Security.

[4] Fernando A Endo, Damien Couroussé, and Henri-Pierre Charles. 2014. Micro-
Architectural Simulation of In-Order and Out-Of-Order ARM Microprocessors
with Gem5 (SAMOS XIV). CEA.

[5] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security.

[6] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor Mudge, Chan-
der Sudanthi, Christopher Emmons, Mitch Hayenga, and Nigel Charles Paver.
2014. Sources of Error in Full-System Simulation (ISPASS).

[7] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution (S&P).

[8] Chris Lamb, Holger Levsen, Mattia Rizzolo, and Vagrant Cascadian. [n.d.]. Re-
producible Builds. https://reproducible-builds.org/

[9] Chih-Chieh Lee, I-Cheng K. Chen, and Trevor N. Mudge. 1997. The Bi-Mode
Branch Predictor. In MICRO.

[10] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security).

[11] Kevin Loughlin, Ian Neal, Jiacheng Ma Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the
Principle of Transient Non-Observability. In USENIX Security.

[12] Jason Lowe-Power. [n.d.]. Visualizing Spectre with gem5. http://www.lowepower.
com/jason/visualizing-spectre-with-gem5.html

[13] Sparsh Mittal. 2016. A Survey of Techniques for Dynamic Branch Prediction.
CCPE (2016).

[14] Ryota Shioya. [n.d.]. Visualizing the out-of-order CPU model. http://learning.
gem5.org/tutorial/presentations/vis-o3-gem5.pdf

[15] James E. Smith. 1998. A Study of Branch Prediction Strategies (ISCA).
[16] Linus Torvalds. [n.d.]. Spectre Side Channels. https://www.kernel.org/doc/html/

latest/admin-guide/hw-vuln/spectre.html Consulted on 2020-09-06.
[17] Vincent M. Weaver. [n.d.]. Linux perf event Features and Overhead. http://web.

eece.maine.edu/~vweaver/projects/perf_events/ Consulted on 2021-02-05.
[18] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack. In USENIX Security.
[19] Tse-Yu Yeh and Yale N. Patt. 1991. Two-Level Adaptive Training Branch Prediction

(MICRO).

https://github.com/IAIK/transientfail
https://reproducible-builds.org/
http://www.lowepower.com/jason/visualizing-spectre-with-gem5.html
http://www.lowepower.com/jason/visualizing-spectre-with-gem5.html
http://learning.gem5.org/tutorial/presentations/vis-o3-gem5.pdf
http://learning.gem5.org/tutorial/presentations/vis-o3-gem5.pdf
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://web.eece.maine.edu/~vweaver/projects/perf_events/

	Abstract
	1 Introduction
	2 Background
	2.1 Caches
	2.2 Branch Prediction
	2.3 Spectre
	2.4 gem5

	3 Related Work
	4 Guidelines on Micro-Architectural Attack Development and Reproduction
	4.1 Development
	4.2 Reproducibility by Environment Control

	5 Benefits of (Pipeline) Visualization
	6 Setup
	7 Implementation
	7.1 Implementing the Spectre Attack on ARM
	7.2 Implementing an ARM gem5 System

	8 Evaluation
	9 Discussion
	10 Conclusion
	References

