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Overview

Rowhammer: bit flip at a random location in DRAM

exploitable → gain root privileges

We are the first to

evaluate performance of cache eviction

perform Rowhammer attacks without clflush on many platforms

perform fault attacks from a website using JavaScript

Daniel Gruss, Graz University of Technology
July 8, 20162
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Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice
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Rowhammer
“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door until
the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

Daniel Gruss, Graz University of Technology
July 8, 20163
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Impact of the CPU cache

CPU
core

CPU
cache

DRAM

only non-cached accesses reach DRAM

original attacks use clflush instruction

→ flush line from cache

→ next access will be served from DRAM

Daniel Gruss, Graz University of Technology
July 8, 20164
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Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1
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Rowhammer (with clflush)

DRAM bank
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wait for it. . .
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Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

reload

bit flip!

Daniel Gruss, Graz University of Technology
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Flush, reload, flush, reload. . .

the core of Rowhammer is essentially a Flush+Reload loop

as much an attack on DRAM as on cache

Daniel Gruss, Graz University of Technology
July 8, 20166
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Rowhammer without clflush?

idea: avoid clflush to be independent of specific instructions

→ no clflush in JavaScript

our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

repeat!
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload

wait for it. . .
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Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

bit flip!
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Requirements for Rowhammer

1. uncached memory accesses: need to reach DRAM

2. fast memory accesses: race against the next row refresh

→ optimize the eviction rate and the timing

Daniel Gruss, Graz University of Technology
July 8, 20169
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Rowhammer.js: the challenges

1. how to get accurate timing in JS?

2. how to get physical addresses in JS?

3. which physical addresses to access?

4. in which order to access them?

Daniel Gruss, Graz University of Technology
July 8, 201610
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Rowhammer.js: the challenges

1. how to get accurate timing in JS? → easy

2. how to get physical addresses in JS? → easy

3. which physical addresses to access? → already solved

4. in which order to access them? → our contribution

Daniel Gruss, Graz University of Technology
July 8, 201610
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Challenge #1: accurate timing in JavaScript?

native code: rdtsc

JavaScript: window.performance.now()

recent patch: time rounded to 5 microseconds

still works: we measure millions of accesses

Daniel Gruss, Graz University of Technology
July 8, 201611
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Challenge #2: physical addresses and JavaScript

OS optimization: use 2MB pages

= last 21 bits (2MB) of physical address

= last 21 bits (2MB) of virtual address

= last 21 bits (2MB) of JS array indices Gruss et al. 2015

several DRAM rows per 2MB page

several congruent addresses per 2MB page
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Challenge #3: physical addresses and DRAM

fixed map: physical addresses → DRAM cells

undocumented for Intel CPUs

reverse-engineered for Sandy Bridge Seaborn 2015

and by us for Sandy, Ivy, Haswell, Skylake, . . . Pessl et al. 2016 (to
appear)

Daniel Gruss, Graz University of Technology
July 8, 201613
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Challenge #3: physical addresses and cache sets

fixed map: physical addresses → cache sets

undocumented for Intel CPUs but reverse-engineered Maurice et al.
2015

Daniel Gruss, Graz University of Technology
July 8, 201614
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Challenge #4: replacement policy

“LRU eviction” memory accesses on older CPUs

cache set

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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Challenge #4: replacement policy

“LRU eviction” memory accesses on older CPUs
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load

16

LRU replacement policy: oldest entry first

timestamps for every cache line

access updates timestamp
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Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

no LRU replacement on recent CPUs

only 75% success rate on Haswell

more accesses → higher success rate, but too slow
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Replacement policy on recent CPUs

“LRU eviction” memory accesses
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Cache eviction strategies: The beginning
A

dd
re

ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time

→ fast and effective on Haswell: eviction rate >99.97%

Daniel Gruss, Graz University of Technology
July 8, 201617
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Cache eviction strategy: New representation

represent accesses as a sequence of numbers:
1,2,1,2,2,3,2,3,3,4,3,4, ...

can be a long sequence

all congruent addresses are indistinguishable w.r.t eviction strategy

→ adding more unique addresses can increase eviction rate

→ multiple accesses to one address can increase the eviction rate

indistinguishable → balanced number of accesses

Daniel Gruss, Graz University of Technology
July 8, 201618
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Cache eviction strategy: Notation (1)

Write eviction strategies as: P-C-D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

Daniel Gruss, Graz University of Technology
July 8, 201619
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Cache eviction strategy: Notation (1)

Write eviction strategies as: P-C-D-L-S

for (s = 0; s <= S - D ; s += L )

for (c = 0; c <= C ; c += 1)

for (d = 0; d <= D ; d += 1)

*a[s+d];

S: total number of different
addresses (= set size)

D: different addresses per
inner access loop

L: step size of the inner
access loop

C: number of repetitions of the
inner access loop

Daniel Gruss, Graz University of Technology
July 8, 201619



www.iaik.tugraz.at

Cache eviction strategy: Notation (2)

for (s = 0; s <= S - D ; s += L )

for (c = 1; c <= C ; c += 1)

for (d = 1; d <= D ; d += 1)

*a[s+d];

P-2 -2 -1 -4 → 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4

P-1-1-1-4 → 1,2,3,4 → LRU eviction with set size 4
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Execution time vs. bit flips
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→ low execution time is better.
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Eviction rate vs. bit flips
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→ high eviction rate is better. Average: 73.96%.
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Eviction strategies on Haswell

Table: The fastest 5 eviction strategies with an eviction rate above 99.75%
compared to clflush and LRU eviction on Haswell.

C D L S Accesses Hits Misses Time (ns) Eviction

- - - - - 2 2 60 99.9999%
5 2 2 18 90 34 4 179 99.9624%
2 2 1 17 64 35 5 180 99.9820%
2 1 1 17 34 47 5 191 99.8595%
6 2 2 18 108 34 5 216 99.9365%
1 1 1 17 17 96 13 307 74.4593%
4 2 2 20 80 41 23 329 99.7800%
1 1 1 20 20 187 78 934 99.8200%

Daniel Gruss, Graz University of Technology
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Evaluation on Haswell
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Figure: Number of bit flips within 15 minutes.
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How to exploit?

OS groups pages / page tables into 2 MB frames

→ Page tables never in a DRAM row between two code/data pages

unless system is almost out of memory

hard to get there without crashing the browser

→ new hammering technique: amplified single-sided hammering
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Amplified Single-Sided Hammering

DRAM bank

cache set 2

cache set 1
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Amplified Single-Sided Hammering

DRAM bank

cache set 2

cache set 1

reload
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Amplified Single-Sided Hammering

DRAM bank

cache set 2

cache set 1

repeat!
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Amplified Single-Sided Hammering

DRAM bank

cache set 2

cache set 1

bit flip!
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Exploiting Rowhammer

trigger bit flips page tables in adjacent 2 MB regions

no near-out-of-memory situation

try until memory mappings changed

= bit flip in your own page tables

try until your own page tables are mapped

= full access to all physical memory
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Reliable exploits based on Rowhammer.js?

“Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector” by Bosman et al. 2016 at IEEE S&P’16

clever attack exploiting memory deduplication and Rowhammer

reliable exploit on Microsoft Edge

Daniel Gruss, Graz University of Technology
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Conclusions

cache eviction fast enough to replace clflush

independent of programming language and available instructions

first remote fault attack, from a browser
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Rowhammer.js:
A Remote Software-Induced
Fault Attack in JavaScript
Daniel Gruss, Clémentine Maurice, and Stefan Mangard
Graz University of Technology

July 8, 2016
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