
C5: Cross-Cores Cache Covert Channel

Clémentine Maurice1, Christoph Neumann1,
Olivier Heen1, and Aurélien Francillon2

1 Technicolor, Rennes, France,
2 Eurecom, Sophia-Antipolis, France

{clementine.maurice,christoph.neumann,olivier.heen}@technicolor.com
aurelien.francillon@eurecom.fr

Abstract. Cloud computing relies on hypervisors to isolate virtual ma-
chines running on shared hardware. Since perfect isolation is difficult to
achieve, sharing hardware induces threats. Covert channels were demon-
strated to violate isolation and, typically, allow data exfiltration. Several
covert channels have been proposed that rely on the processor’s cache.
However, these covert channels are either slow or impractical due to the
addressing uncertainty. This uncertainty exists in particular in virtual-
ized environments and with recent L3 caches which are using complex
addressing. Using shared memory would elude addressing uncertainty,
but shared memory is not available in most practical setups.
We build C5, a covert channel that tackles addressing uncertainty with-
out requiring any shared memory, making the covert channel fast and
practical. We are able to transfer messages on modern hardware across
any cores of the same processor. The covert channel targets the last level
cache that is shared across all cores. It exploits the inclusive feature of
caches, allowing a core to evict lines in the private first level cache of
another core. We experimentally evaluate the covert channel in native
and virtualized environments. In particular, we successfully establish a
covert channel between virtual machines running on different cores. We
measure a bitrate of 1291bps for a native setup, and 751bps for a virtu-
alized setup. This is one order of magnitude above previous cache-based
covert channels in the same setup.

Keywords: Covert channel, Cache, Cross-VM, Virtualization, Cloud
computing.

1 Introduction

Cloud computing leverages shared hardware to reduce infrastructure costs. The
hypervisor, at the virtualization layer, provides isolation between the virtual
machines. However, the last years have shown a great number of information
leakage attacks across virtual machines, namely covert and side channels [13, 14,
23, 26–28, 30]. These attacks evidently violate the isolation.

Covert channels involve the cooperation of two attackers’ processes to ac-
tively exchange information. Side channels imply passive observation of a vic-
tim’s process by an attacker’s process. Covert and side channels have been built

2 C5: Cross-Cores Cache Covert Channel

in a native environment between two processes, and in a virtualized environment
between two virtual machines. These attacks leverage elements of the microarchi-
tecture that are accessible remotely by an attacker, such as the memory bus [26],
the data cache [4, 21, 23, 28], the instruction cache [1, 30] or the branch target
buffer [2].

In this article, we focus on covert channels. They are used to exfiltrate sensi-
tive information, and can also be used as a co-residency test [29]. There are many
challenges for covert channels across virtual machines. Core migration drastically
reduces the bitrate of channels that are not cross-core [27]. Simultaneous exe-
cution of the virtual machines over several cores prevents a strict round-robin
scheduling between the sender and the receiver [26]. Functions of address trans-
lation, and functions that map an address to a cache set are not exposed to
processes, and thus induce uncertainty over the location of a particular data in
the cache. This addressing uncertainty (term coined in [26]) prevents the sender
and the receiver to agree on a particular location to work on.

Covert channels that don’t tackle the addressing uncertainty are limited to
use private first level caches, thus to be on the same core for modern proces-
sors [26]. This dramatically reduces the bitrate in virtualized environment or in
the cloud, with modern processors that have several cores with a shared and
physically indexed last level cache. Ristenpart et al. [23] target the private cache
of a core and obtain a bitrate of 0.2bps, with the limitation that the sender and
receiver must be on the same core. Xu et al. [27] quantify the achievable bitrate
of this covert channel: from 215bps in lab condition, they reach 3bps in the
cloud. This drop is due to the scheduling of the virtual machines across cores.
Yarom and Falkner [28] circumvent the issue of physical addressing by relying on
deduplication offered by the hypervisor or the OS. With deduplication, common
pages use the same caches lines. However, deduplication can be deactivated for
all or some specific security relevant pages, e.g., OpenSSL pages, making the
previous attacks impractical. Wu et al. [26] avoid the shortcomings of caches by
building a covert channel across cores that is based on the memory bus, using
the lock instruction. We refer the reader to Section 6 for more details on state
of the art techniques.

We differentiate our covert channel by tackling the issue of the addressing
uncertainty without relying on any shared memory. Our covert channel works
between two virtual machines that run across any cores of the same processor.
We revisit the method of Ristenpart et al. [23], and take advantage of the shared
and inclusive feature of the Last Level Cache in modern processors. We obtain
a high bitrate, arguing that the covert channel is practical.

Contributions
In this paper, we demonstrate the information leakage due to a new covert
channel that uses the last level cache.
1. We build the C5 covert channel across virtual machines, on modern hard-

ware. In particular, we tackle the addressing uncertainty that severely limits
the previous covert channels.

C5: Cross-Cores Cache Covert Channel 3

2. We analyze the interferences that are the root causes that enable this covert
channel, i.e., microarchitectural features such as the shared last level cache,
and the inclusive feature of the cache hierarchy.

3. We evaluate the C5 covert channel in a native environment and achieve a
bitrate of 1291bps (error rate: 3.1%). We evaluate the C5 covert channel in
a virtualized environment and achieve a bitrate of 751bps (error rate: 5.7%).
We explore the relation between the bitrate and the error rate.

The remainder of this paper is organized as follows. Section 2 covers back-
ground on the cache internals needed for the remainder of the article. Section 3
details our technique to build a cache-based covert channel. Section 4 exposes our
experiments in lab-controlled native and virtualized setups. Section 5 discusses
the factors that impact performance, as well as mitigations. Section 6 presents
the related work and the differences with our work. Section 7 summarizes our
results and their implications.

2 Background

In this section, we provide background notions on cache internals. We then review
techniques that exploit cache interferences for the communication between two
processes. Finally, we discuss the effect of virtualization and complex addressing
on the cache addressing, and its impact on cache-based covert channels.

2.1 Cache fundamentals

The cache is faster than main memory and stores recently-used data. Intel pro-
cessors1 use a cache hierarchy similar to the one depicted in Figure 1 since the
Nehalem microarchitecture (2008) and until the most recent Haswell microar-
chitecture [12]. There are usually three cache levels, called L1, L2 and L3. The
levels L1 and L2 are private to each core, and store several kilobytes. The L3
cache is also called Last Level Cache (LLC in the rest of this paper). The LLC is
divided into slices that are connected to the cores through a ring interconnect.
The LLC is shared between the cores, i.e., each core can address the entire cache.
It is also the largest, usually several megabytes.

To read or write data in main memory, the CPU first checks the memory
location in the L1 cache. If the address is found, it is a cache hit and the CPU
immediately reads or writes data in the cache line. Otherwise, it is a cache miss
and the CPU searches for the address in the next level, and so on, until reaching
the main memory. A cache hit is significantly faster than a cache miss.

Data is transfered between the cache and the memory in 64 bytes blocks
called lines. The location of a particular line depends on the cache structure.
Today’s caches are n-way associative, which means that a cache contains sets of
1 In this article, we focus on Intel processors. Still, most of this discussion on caches

applies also to other x86 processors.

4 C5: Cross-Cores Cache Covert Channel

core 1

LLC

L2

core 2

L2

core 3

L2

core 4

L2

L1L1L1L1

Fig. 1. Cache hierarchy of a quad-core Intel processor (since Nehalem microarchitec-
ture). The LLC is inclusive, which means it is a superset of the L1 and L2 caches.

n lines. A line is loaded in a specific set depending on its address, and occupies
any of the n lines.

With caches that implement a direct addressing scheme, memory addresses
can be decomposed in three parts: the tag, the set and the offset in the line. The
lowest o bits determine the offset in the line, with: o = log2(line size). The next
s bits determine the set, with: s = log2(number of sets). And the remaining t
bits form the tag. A 48 bit address can be represented as follows:

tag set line offset

48 0

s ot

In contrast to direct addressing, some caches implement a complex addressing
scheme, where potentially all address bits are used to index the cache. The
function that maps an address to a set is not documented. This has important
implications for covert channels.

The address used to compute the cache location can be either a physical or a
virtual address. A Virtually Indexed, Virtually Tagged (VIVT) cache only uses
virtual addresses to locate the data in the cache. Modern processors involve phys-
ical addressing, either Virtually Indexed Physically Tagged (VIPT), or Physically
Indexed Physically Tagged (PIPT). The physical address is not known by the
processes, i.e., a process cannot know the location of a specific line for physically
addressed caches. This too has important implications for covert channels.

When a cache set is full, a cache line needs to be evicted before storing a
new cache line. When a line is evicted from L1 it is stored back to L2, which can
lead to the eviction of a new line to LLC, etc. The replacement policy decides
the victim line to be evicted. Good replacement policies choose the line that is
the least likely to be reused. Such policies include Least Recently Used (LRU),
Least Frequently Used, Pseudo Random, and Adaptive.

C5: Cross-Cores Cache Covert Channel 5

Depending on the cache design, data stored on one level may also be stored
on other levels. A level is inclusive if it is a superset of the lower levels. To
guarantee the inclusion property, when a line is evicted from the LLC, the line
is also removed (invalidated) in the lower caches L1 and L2. A level is exclusive
if a data is present at most once between this level and the lower levels. Intel
CPUs from Nehalem to Haswell microarchitecture have exclusive L2 caches, and
an inclusive LLC.

2.2 Playing with caches for fun and profit

Isolation prevents processes from directly reading or writing in the cache memory
of another process. Cache-based covert and side channels use indirect means and
side effects to transfer information from one process to another. One side effect
is the variation of cache access delays.

Cache hits are faster than cache misses. This property allows monitoring
access patterns, and subsequently leaking information. In access-driven attacks,
a process monitors the time taken by its own activity to determine the cache
sets accessed by other processes.

Two general strategies exist: prime+probe [21, 19, 24, 18] and flush+reload [8,
28]. With prime+probe, a receiver process fills the cache, then waits for a sender
process to evict some cache sets. The receiver process reads data again and
determines which sets were evicted. The access to those sets will be slower for
the receiver because they need to be reloaded in the cache. With flush+reload, a
receiver process flushes the cache, then waits for a sender process to reload some
cache sets. The receiver process reads data again and determines which sets were
reloaded. The access to those sets will be faster for the receiver because they
don’t need to be reloaded in the cache. The flush+reload attack assumes shared
lines of cache between the sender and the receiver – and thus shared memory
– otherwise the sets reloaded by the sender will not be faster to reload by the
receiver than the evicted ones. Indeed, the receiver cannot access sets reloaded
by the sender if they don’t share memory.

2.3 The problem of addressing uncertainty

The previous attacks rely on the fact that it is possible to target a specific
set. However, two conditions individually create uncertainty on the addressing,
making it difficult to target a specific set: virtualization and complex addressing.

Processors implement virtual memory using a Memory Management Unit
(MMU) that maps virtual addresses to physical addresses. With virtual ma-
chines, hypervisors introduce an additional layer of translation, known as Ex-
tended Page Tables on Intel processors. The guest virtual pages are translated to
the guest physical pages, and further to the actual machine pages. The hypervi-
sor is responsible for mapping the guest physical memory to the actual machine
memory. A process knowing a virtual address in its virtual machine has no way of
learning the corresponding physical address of the guest, nor the actual machine
address. In a native environment, the layer of translation from virtual to physical

6 C5: Cross-Cores Cache Covert Channel

Table 1. Characteristics of the CPUs found on Amazon EC2 [3, 7, 20].

Model Microarch Year Cores LLC Potential for C5
Opteron 270 K8 2005 2 private L2 exclusive not cross-core
Opteron 2218 HE K8 2007 2 private L2 exclusive not cross-core
Xeon E5430 Core 2007 4 2×6MB L2 non-inclusive not cross-core
Xeon E5507 Nehalem 2010 4 shared 4MB L3 inclusive 3
Xeon E5645 Nehalem 2011 6 shared 12MB L3 inclusive 3
Xeon E5-2670 Sandy Bridge 2012 8 shared 20MB L3 inclusive 3
Xeon E5-2670 v2 Ivy Bridge 2013 10 shared 25MB L3 inclusive 3
Xeon E5-2666 v3 Haswell 2014 9 shared 25MB L3 inclusive 3

addresses does not create uncertainty on the set if both processes allocate large
portions of aligned and contiguous memory2. In a virtualized environment, the
additional layer of translation does create uncertainty, as the alignment is not
guaranteed.

In addition to this, the complex addressing scheme maps an address to a
set with a function that potentially uses all address bits. As the function is
undocumented, a process cannot determine the set in which it is reading or
writing. Even aligned memory does not guarantee that two processes will target
the same set.

This has implications for the design of covert channels. Indeed, with the ad-
dressing uncertainty, two processes without any shared memory cannot directly
agree on a set to work on.

3 C5 Covert Channel

Our covert channel relies on the fact that the LLC is shared and inclusive.
Those two characteristics are present in all CPUs from Nehalem to Haswell
microarchitectures, i.e., all modern Intel CPUs, including most CPUs that are
found in, e.g., Amazon EC2 (Table 1).

The sender process sends bits to the receiver by varying the access delays that
the receiver observes when accessing a set in the cache. At a high level view, the
covert channel encodes a ‘0’ as a fast access for the receiver and a ‘1’ as a slow
access. In this sense, our covert channel strategy is close to prime+probe.

Figure 2 illustrates our covert channel. The receiver process repeatedly probes
one set. If the sender is idle (a ‘0’ is being transmitted), the access is fast because
the data stays in the private L1 cache of the receiver, see Figure 2-1. The data
is also present in the LLC because of its inclusive property.

To send a ‘1’, the sender process writes data to occupy the whole LLC, see
Figure 2-2; in particular this evicts the set of the receiver from the LLC. Because
of the inclusive property, the data also gets evicted from the private L1 cache
of the receiver. The receiver now observes that the access to its set is slow; the
data must be retrieved from RAM, see Figure 2-3.

We now provide a detailed description of the sender and the receiver.
2 It cannot be guaranteed using malloc on 4kB pages, but it is possible to use huge

pages of 2MB or 1GB if the CPU supports it.

C5: Cross-Cores Cache Covert Channel 7

(1) receiver: short probing (2) sender: filling (3) receiver: long probing

inclusion eviction

sender receiver sender senderreceiver receiver

LLC

L2

L1

RAM

read write

Fig. 2. Cross-core covert channel illustration of sender and receiver behavior. Step (1):
the receiver probes one set repeatedly; the access is fast because the data is in its L1
(and LLC by inclusive feature). Step (2): the sender fills the LLC, thus evicting the
set of the receiver from LLC and its private L1 cache. Step (3): the receiver probes the
same set; the access is slow because the data must be retrieved from RAM.

3.1 Sender

The sender needs a way to interfere with the private cache of the other cores.
In our covert channel, the sender leverages the inclusive feature of the LLC (see
Section 2.1). As the LLC is shared amongst the cores of the same processor,
the sender may evict lines that are owned by other processes, and in particular
processes running on other cores.

A straightforward idea is that the sender writes in a set, and the receiver
probes the same set. However, due to virtualization and complex addressing,
the sender and the receiver cannot agree on the cache set they are working on
(see Section 2.3). Our technique consists of a scheme where the sender flushes
the whole LLC, and the receiver probes a single set. That way, the sender is
guaranteed to affect the set that the receiver reads, thus resolving the addressing
uncertainty.

In order to flush the whole LLC, the sender must evict cache lines and there-
fore writes data into a buffer. In fact, either writing or reading data would
provoke a cache miss. We choose to write because a read miss following a write
induces a higher penalty for the receiver than a read miss following a read.
This leads to a stronger signal. We further discuss the influence of this choice in
Section 5.

We leverage the replacement policy within a set to evict lines from the LLC.
The replacement policy and the associativity influence the buffer size b of the

8 C5: Cross-Cores Cache Covert Channel

Algorithm 1 Sender: f(n, o, s, c, w)
message ← {0,1}*
n ← LLC associativity
o← log2(line size)
s← log2(number of sets in LLC)
b ← n× 2o+s × c
buffer[b]
for each bit in message do

wait(w)
if bit == 1 then

for i = 0 to number of sets do
for j = 0 to n× c do

buffer[2oi + 2o+sj] = constant
end for

end for
end if

end for

sender. Considering a pure LRU policy, writing n lines in each set is enough
to flush all the lines of the LLC, n being the associativity. The replacement
policies on modern CPUs drastically affect the performance of caches; therefore
they are well guarded secrets. Pseudo-LRU policies are known to be inefficient
for memory intensive workloads of working sets greater than the cache size.
Adaptive policies [22] are more likely to be used in actual processors. Since the
actual replacement policy is unknown, we determine experimentally the size b of
the buffer to which the sender needs to write.

The order of writes into the buffer is highly dependent on the cache microar-
chitecture. Ideally, to iterate over the buffer we would take into account the
function that maps an address to a set. However this function is undocumented,
thus we assume a direct addressing; other types of iterations are possible. The
sender writes with the following memory pattern 2oi + 2o+sj as described in
Algorithm 1. 2s is the number of sets of the LLC and 2o the line size; j and i
are line and set indices respectively.

Algorithm 1 summarizes the steps performed by the sender. The parameters
are the LLC associativity n, the number of sets 2s, the line size 2o, and a constant
c to adapt the buffer size. To send a ‘1’, the sender flushes the entire LLC by
writing in each line j (n × c times) of each set i, with the described memory
pattern. To send a ‘0’, the sender does nothing. The sender waits for a determined
time w before sending a bit to allow the receiver to distinguish between two
consecutive bits.

3.2 Receiver

The receiver repeatedly probes all the lines of the same cache set in its
L1 cache. Algorithm 2 summarizes the steps performed by the receiver. The
iteration is dependent on the cache microarchitecture. To access each line i (n

C5: Cross-Cores Cache Covert Channel 9

Algorithm 2 Receiver: f(n, o, s)
n ← L1 associativity
o← log2(line size)
s← log2(number of sets in L1)
buffer[n× 2o+s]
loop

read ← 0
begin measurement
for i = 0 to n do

read + = buffer[2o+si]
end for
end measurement, record (localT ime, accessDelay)

end loop

times) of the same set, the receiver reads a buffer – and measures the time
taken – with the following memory pattern: 2o+si. The cumulative variable read
prevents optimizations from the compiler, by introducing a dependency between
the consecutive loads so that they happen in sequence and not in parallel. In the
actual code, we also unroll the inner for loop to reduce unnecessary branches
and memory accesses.

The receiver is able to probe a set in its L1 cache because the L1 is virtually
indexed, and does not use complex addressing. We do not seek to probe the L2
or L3, because all read and write accesses reach the L1 first and they might evict
each other, creating differences in timing that are not caused by the sender.

The receiver probes a single set when the sender writes to the entire cache,
thus one iteration of the receiver is faster than one iteration of the sender. The
receiver runs continuously and concurrently with the sender, while the sender
only sends one bit every w microseconds. As a consequence, the receiver performs
several measurements for each bit transmitted by the sender.

One measurement of the receiver has the form (localT ime, accessDelay),
where localT ime is the time of the end of one measurement according to the
local clock of the receiver and accessDelay is the time taken for the receiver to
read the set. Figure 3 illustrates the measurements performed by the receiver.

Having these measurements, the receiver decodes the transmitted bit-sequence.
First, the receiver extracts all the ‘1’s. The receiver removes all points that have
an accessDelay below (or equal to) typical L2 access time. Then the receiver
only keeps the localT ime information and applies a clustering algorithm to sep-
arate the bits. We choose DBSCAN [6], a density-based clustering algorithm,
over the popular k-means algorithm. A drawback of the k-means algorithm is
that it takes the number k of clusters as an input parameter. In our case, it
would mean knowing in advance the number of ‘1’s, which is not realistic. The
DBSCAN algorithm takes two input parameters, minPts and ε:

1. minPts: the minimum number of points in each cluster. If minPts is too
low, we could observe false positives, reading a ‘1’ when there is none; if

10 C5: Cross-Cores Cache Covert Channel

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000 120000 140000 160000

a
cc
e
s
s
D
e
la
y
(c
y
cl
es
)

localTime(microseconds)

ticks

header footerpayload

w

Fig. 3. Reception of a 128-bit transmission. Laptop setup in native environment, with
w = 500µs, b = 3MB.

minPts is too high, we could observe false negatives, not reading a ‘1’ when
there is one. In practice, we use minPts between 5 and 20.

2. ε: if a point belongs to a cluster, every point in its ε-neighborhood is also
part of the cluster. In practice, we choose ε below w.

Once all the ‘1’s of the transmitted bit-sequence have been extracted, the re-
ceiver reconstructs the remaining ‘0’s. This step is straightforward as the receiver
knows the time taken to transmit a ‘0’ which is w.

4 Experiments

In this section, we evaluate the C5 covert channel on native and virtualized se-
tups. We then illustrate the effect of the complex addressing regarding addressing
uncertainty.

4.1 Testbed

Table 2 summarizes the characteristics of the laptop and workstation setups.
Some parameters of the architecture are constant for the considered processors.
The line size in all cache hierarchy is 64 bytes, and the L1 is 8-associative and
has 64 sets. We conduct our experiments in lab-controlled native and virtualized
environments.

We adjust two parameters: the size b of the buffer that evicts the LLC, and
the delay w between the transmission of two consecutive bits. The size b and
the delay w impact the bitrate and the error rate of the clustering algorithm, as

C5: Cross-Cores Cache Covert Channel 11

Table 2. Experimental setups, LLC characteristics.

Name Model Microarch Cores Size Sets Asso. Complex
addressing

laptop i5-3340M Ivy Bridge 2 3MB 4096 12 yes
workstation Xeon E5-2609v2 Ivy Bridge 4 10MB 8192 20 yes

depicted in Figures 4 and 5. The precision of the clustering algorithm increases
with the size b, however the bitrate is proportionally reduced. The size b is
controlled by the multiplicative parameter c and must be at least the size of
the LLC. The bitrate increases with lower values of w, but the precision of the
clustering algorithm decreases.

To evaluate the covert channel, the sender transmits a random 4096-bit mes-
sage to the receiver. We transmit series of 20 consecutive ‘1’s as a header and a
footer framing the payload to be able to extract it automatically. The receiver
then reconstructs the message from its measurements. We run 10 experiments
for each set of parameters, and calculate the bitrate and the error rate. We de-
rive the error rate from the Levenshtein distance between the sent payload and
the received payload. The Levenshtein distance is the minimum number of char-
acters edits and accounts for insertions, deletions and bit flips. We provide the
evaluation results for each environment: native in Section 4.2 and virtualized in
Section 4.3.

Establishing cache-based channels demands fine grained measurements. Pro-
cessors provide a timestamp counter for the number of cycles since reset. This
counter can be accessed by the rdtsc and rdtscp instructions. However, read-
ing the counter is not sufficient as modern processors use out-of-order execution.
The actual execution may not respect the sequence order of instructions as writ-
ten in the executable. In particular, a reordering of the rdtsc instruction can
lead to the measurement of more, or less, than the wanted sequence. We pre-
vent reordering by using serializing instructions, such as cpuid. We follow Intel
recommendations for fine-grained timing analysis in [11].

4.2 Native environment

We evaluate C5 in the laptop and workstation setups, in a native (non-virtualized)
environment. We run the sender and the receiver as unprivileged processes, in
Ubuntu 14.04. To demonstrate the cross-core property of our covert channel,
we pin the sender and the receiver to different cores3. Figure 3 illustrates a
transmission of 128 bits in the laptop setup, for w = 500µs and b = 3MB.

Figure 4 presents the results in the laptop setup, for two values of b, and
three values for waiting time w. For b = 3MB (the size of the LLC), varying w
we obtain a bitrate between 232bps and 1291bps. The error rate is comprised
between 0.3% (with a standard deviation σ = 3.0 × 10−3) and 3.1% (σ = 0.013).
When we increase b to 4.5MB, the bitrate slightly decreases but stays in the
3 Using the sched setaffinity(2) Linux system call.

12 C5: Cross-Cores Cache Covert Channel

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

b
it
ra

te
 (

b
p
s)

error rate

Buffer size: b=3MB b=4.5MB

Fig. 4. Bitrate as a function of the error rate, for two sizes of buffer b. Laptop setup
(3MB LLC) in native environment.

same order of magnitude, between 223bps and 1033bps. The error rate decreases
between 0.02% (σ = 8.5 × 10−5) and 1.6% (σ = 1.1 × 10−4). The standard
deviation of the error rate also decreases, leading to more reliable transmission.
We conclude that it is sufficient to write n lines per set, but that the transmission
is more reliable if we write more than n lines. This is a tradeoff between the
bitrate and the error rate.

In the workstation setup, we obtain a bitrate of 163bps for b = 15MB
(1.5 × LLC), for an error rate of 1.9% (σ = 7.2 × 10−3). As expected, we observe
that when the size of the LLC increases the bitrate decreases, since it takes
longer to send a ‘1’. Compared to the laptop setup, the error rate and the stan-
dard deviation have also increased. There are two factors that can explain these
results. First, the ratio of the associativity over the number of cores is smaller
in the workstation setup, which means that lines have a greater probability of
being evicted by processes running in other cores, leading to a higher error rate.
Second, the LLC is bigger in the workstation setup, which means that the allo-
cation of a buffer might not cover all the sets of the LLC, leading to a difference
in the error rate between runs, and thus a higher standard deviation.

4.3 Virtualized environment

We evaluate C5 in the laptop setup, using Xen 4.4 as hypervisor. We run the
sender as an unprivileged process in a guest virtual machine, and the receiver
as an unprivileged process in another guest virtual machine. The guests and
dom0 run Ubuntu 14.04. Each guest has one vCPU, and dom0 uses the default
algorithm to schedule guest virtual machines.

Figure 5 presents the results for two values of b (b = 3MB and b = 4.5MB),
and two waiting time w (w = 4000µs and w = 1000µs). For b = 3MB (the size
of the LLC), varying w we obtain a bitrate between 229bps and 751bps. When
we increase b to 4.5MB, the bitrate goes from 219bps to 661bps. There is a

C5: Cross-Cores Cache Covert Channel 13

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.01 0.02 0.03 0.04 0.05 0.06

b
it
ra

te
 (

b
p
s)

error rate

Buffer size: b=3MB b=4.5MB

Fig. 5. Bitrate as a function of the error rate, for two sizes of buffer b. Laptop setup
(3MB LLC) in virtualized environment.

performance degradation compared to the native setup, but the bitrate stays in
the same order of magnitude. The error rate is slightly higher than in the native
setup, between 3.3% (σ = 0.019) and 5.7% (σ = 8.8 × 10−3), and is comparable
for the two values of b. The standard deviation of the error rate is also higher
than in the native setup, and is higher for a low value of b.

4.4 Complex addressing matters

We illustrate the impact of complex addressing on the cache-based covert channel
proposed in the first part of [26]. The sender accesses a sequence of lines that map
the memory pattern M +X · 256k. The pattern is crafted such as to change the
bits that correspond to the tag of the memory address. All accesses following this
pattern target the same set. The receiver measures the access latency of another
sequence of lines that follow the same pattern. The receiver then accesses the
same set than the sender, and observes a longer access when the sender has
flushed the lines. The authors of [26] evaluate the covert channel with a Core 2
Q8400 processor, which does not use a complex addressing scheme.

We reproduce this covert channel in the laptop setup in a native environment.
The microarchitecture of the laptop CPU is more recent than the Q8400 proces-
sor, and the LLC uses complex addressing. We align the memory allocated by
the sender and the receiver, and access the same memory pattern. As expected,
we observe that the receiver is unable to retrieve the message. This is due to the
complex addressing, causing the sender and the receiver to access different sets,
removing the interference needed to establish a covert channel.

14 C5: Cross-Cores Cache Covert Channel

5 Discussion

In this section we expose the factors that impact – positively or negatively – the
performances of the C5 covert channel. We also discuss the effects of a number
of existing mitigation methods.

5.1 Performance

Evicting cache lines by reading or writing memory modifies the quality of the
signal. A read is generally less costly than a write, so the sender could prefer to
perform reads instead of writes in our covert channel. However, reads do not have
the same impact in terms of timing for the receiver. When the receiver loads a
new cache line, there are two cases. In the first case, the line had previously only
been read by the sender, and not modified. The receiver thus requires a single
memory access to load the line. In the second case, the line had previously been
modified by the sender. At the time of eviction, it needs to be written back in
memory. This requires an additional memory access, and thus takes longer. We
choose to evict caches lines using memory writes because of the higher latency,
which improves the signal quality.

Whenever the sender and the receiver run on the same core, the C5 covert
channel may benefit from optimizations. In this case, there is no need to flush the
entire LLC: flushing the L1 cache that is 32kB is sufficient and faster. However,
the sender and the receiver are scheduled by the OS or the hypervisor, and
frequently run on different cores [27]. We would need a method to detect when
both run on the same core, and adapt the sender algorithm accordingly. Our
method is simpler as it is agnostic to the scheduler.

The detection algorithm of the receiver impacts the overall bitrate. We put
the priority on having a good detector at the receiver end, to minimize the error
rate. In our implementation, the sender is waiting between the transmission
of consecutive bits. The receiver uses a density-based clustering algorithm to
separate the bits. Further work can be dedicated to reduce or eliminate the
waiting time on the sender side, by using a different detection algorithm on the
receiver side.

The C5 channel depends on the cache design. In particular, it depends on the
shared and inclusive LLC. We believe this is a reasonable assumption, as this is
the case since several generations of microarchitectures at Intel. The caches of
AMD processors have historically been exclusive, and our covert channel is likely
not to work with these processors. However, inclusive caches seem to be a re-
cent trend at AMD. Indeed, they were recently introduced in the new low-power
microarchitecture named Jaguar. As Wu et al. [26] note, cache-based covert
channels also need to be on the same processor. On a machine with two proces-
sors, two virtual machines are on average half the time on the same processor.
Such a setting would introduce transmission errors. These errors may be han-
dled by implementing error correcting codes or some synchronization between
the receiver and the sender. In any case the bitrate of our covert channel would
be reduced.

C5: Cross-Cores Cache Covert Channel 15

In a public cloud setup such as on Amazon EC2, several factors may impact
the performance and applicability of the C5 covert channel. First, the sender and
receiver must be co-resident, i.e., run on the same hardware and hypervisor de-
spite the virtual machine placement policy of the cloud provider. Ristenpart et al.
[23] showed that it is possible to achieve co-residency on Amazon EC2. A test is
also required to determine co-residency; the assigned IP addresses, the round-trip
times [23] and clock-skews [16, 17] help establish if two machines are co-resident
or not. Second, the hypervisor, and in particular the associated vCPU scheduler,
may have an impact on performances. Amazon EC2 relies on a customized ver-
sion of Xen. The exact scheduler used is unknown. As a consequence, the results
obtained in our lab experiments using Xen cannot be translated as is to a cloud
setting. We expect the performance to be degraded in a cloud environment.

Similarly, we expect the error rate to increase in presence of a high non-
participating workload, as it is the case with other cache covert channels [27].
The resulting error rate depends on the memory footprint of the workload, the
core on which it executes, and on its granularity of execution compared to the
transmission delay of the message.

5.2 Mitigation

Several papers focus on mitigating cache-based side channels, at the software
and hardware levels. We review some of these solutions to determine if they also
apply to the mitigation of covert channels.

Domnister et al. [5] propose to modify the replacement policy in the cache
controller. Their cache design prevents a thread from evicting lines that belong
to other threads. Although they state that L2/L3 attacks and defense are out of
the scope of their paper, if the policy is applied to the LLC, the sender cannot
evict all lines of the receiver, so it may partially mitigate our covert channel too.
However, the performance degradation of the method on L1 cache is about 1%
on average, up to 5% on some benchmarks. The mitigation might impact even
more the performances if done also on the LLC. Wang and Lee [25] propose two
new cache architectures. The Partition Locked Cache avoid cache interference
by locking cache lines, and preventing processes from evicting cache lines of
sensitive programs. Changes to the system are necessary to manage which lines
should be locked, and would target specific programs, so it may not mitigate our
covert channel. The Random Permutation Cache randomizes the interferences
such that information about cache timings is useless to the attacker. It is done
by creating permutations tables so that the memory-to-cache-sets mapping are
not the same for sensitive programs as for others. However, our covert channel
is agnostic to this mapping since we target the whole cache, so this solution may
not mitigate our covert channel. These hardware-based solutions are currently
not implemented.

Zhang et al. [31] designed a countermeasure for side channels in the cloud.
The guest VM itself repeatedly cleans the L1 cache. This introduces noise on
the timing measurements of the attacker, thus rendering them useless. As the
mitigation is only performed on the L1 cache, it may not mitigate our covert

16 C5: Cross-Cores Cache Covert Channel

channel that exploits the LLC. Furthermore, applying this countermeasure to
the whole cache hierarchy would lead to an important performance penalty, as
this would nullify the purpose of the cache.

The above mitigations do not take into account the specificities of the C5
covert channel. Exclusive caches, generally used by AMD processors, mitigate
our covert channel as it prevents the LLC from invalidating sets of private L1
caches. Other mitigations might be implemented in the context of virtualization.
Similar to Kim et al. [15], the hypervisor can partition the LLC such that each
virtual machine works on dedicated sets within the LLC. This way the sender
cannot evict the lines of the receiver that is running in a different virtual machine.
Of course these mitigations might degrade the overall performance of the system.
These mitigations are subject of future work.

6 Related work

Covert channels using caches have been known for a long time. Hu [9] in 1992 is
the first to consider the use of cache to perform cross-process leakage via covert
channels. Covert channels in the cloud were introduced by Ristenpart et al.
[23] in 2009, and were thus performed on older generations of processors. In
particular, it was not possible to perform a cross core channel using the cache.
Ristenpart et al. built a covert channel for Amazon EC2, based on L2 cache
contention that uses a variant of prime+probe [21, 19]. Despite its low bitrate of
0.2bps, this covert channel shows deficiencies in the isolation of virtual machines
in Amazon EC2. However, this covert channel has some limitations: the sender
and receiver must synchronize and share the same core. Xu et al. [27] quantify the
achievable bit rate of such a covert channel: they reach 215bps in lab condition,
but only 3bps in the cloud. The dramatic drop is due to the fact that the covert
channel does not work across cores, and thus the channel design has to take into
account core migration. In contrast with these works, we leverage the properties
of modern hardware to build a covert channel that works across cores.

To make cache-based covert channels across cores in a virtual environment,
the protocol has to resolve or bypass the issues brought by addressing uncer-
tainty. Wu et al. [26] observe that the data transmission scheme has to be purely
time-based. This contrasts with the covert channel designed by Percival [21] for a
native environment that used cache regions to encode information. To illustrate
the time-based transmission scheme, Wu et al. propose a cache-based covert
channel for which the sender and receiver are not scheduled in a round-robin
fashion, but simultaneously. However, the sender and receiver have to agree on
a set to work on, which ignores the addressing issue. Their experiment has been
tested on a non-virtualized environment, and on a CPU with an older microar-
chitecture that does not feature complex addressing. They further assume that
cache-based covert channels are impractical due to the need of a shared cache.
However, modern processors – including those used by Amazon – have all the
right properties that make cache-based covert channels practical, and thus this
assumption needs to be revisited. Moreover, complex addressing on the LLC

C5: Cross-Cores Cache Covert Channel 17

is now a common feature. The main contribution of Wu et al. is a new covert
channel that is based on the memory bus, using the lock instructions, that works
across processors. Their experiment performed in the cloud obtains a bitrate of
over 100bps.

To bypass the addressing uncertainty, Yarom and Falkner [28] rely on dedu-
plication offered by the hypervisor. With deduplication, common pages use the
same cache lines. They build a side channel on the GnuPG implementation of
RSA and extract more than 90% of the key in a cross-VM attack. They use the
clflush instruction that flushes a line from the whole cache hierarchy, and also
exploit the inclusive feature of LLC caches. This attack has also been used to
target AES in a cross-VM setting [14]. However, using deduplication imposes
constraints on the platform where the attack can be performed. For instance, to
the best of our knowledge, the Xen version used in Amazon EC2 does not allow
deduplication. Thus the attacks [28, 14] do not work on Amazon EC2. In con-
trast with these papers, we tackle the addressing uncertainty without any shared
memory. Hund et al. [10] resolve the addressing uncertainty by reverse engineer-
ing the function that maps a physical address to a slice in order to circumvent
the kernel space ASLR. While this is a first step to resolve the addressing uncer-
tainty brought by complex addressing on modern processors, the authors only
reversed the function for a given Sandy Bridge processor. It is unknown if the
function differs for processors of the same micro-architecture, or for processors
of different micro-architecture. Our covert channel is agnostic to this function,
hence it applies to a large range of modern processors.

Most covert channels are used in offensive scenarios. Zhang et al. [29] propose
to use cache covert channels in a defensive scenario. The goal is to detect the
co-residency of foe virtual machines on a physical machine that is supposed to
be exclusively owned by a user. The user coordinates its VMs to silence them,
avoiding using portions of the cache.

7 Conclusion

Virtualized setups are becoming ubiquitous with the adoption of cloud com-
puting. Moreover, modern hardware tends to increase the number of cores per
processor. The cross-core and cross virtual machines properties become manda-
tory for covert channels. In this paper, we built the C5 covert channel that
transfers messages across different cores of the same processor. Our covert chan-
nel tackles addressing uncertainty that is in particular introduced by hypervisors
and complex addressing. In contrast to previous work, our covert channel does
not require any shared memory. All these properties make our covert channel
fast and practical.

We analyzed the root causes that enable this covert channel, i.e., microar-
chitectural features such as the shared last level cache, and the inclusive fea-
ture of the cache hierarchy. We experimentally evaluated the covert channel in
native and virtualized environments. We successfully established a covert chan-
nel between virtual machines despite the CPU scheduler of the hypervisor. We

18 C5: Cross-Cores Cache Covert Channel

measured a bitrate one order of magnitude above previous cache based covert
channels in the same setup.

Future work will investigate specific countermeasures against the C5 covert
channel. Countermeasures should be investigated at different levels, ranging from
the microarchitectural features of processors to the memory management of the
hypervisor.

References
1. O. Acıiçmez. Yet Another MicroArchitectural Attack: Exploiting I-cache. In Pro-

ceedings of the 1st ACM Computer Security Architecture Workshop (CSAW’07),
2007.

2. O. Acıiçmez, J.-P. Seifert, and c. K. Koç. Predicting secret keys via branch pre-
diction. In CT-RSA 2007, 2007.

3. Amazon Web Services. Amazon EC2 Instances. https://aws.amazon.com/ec2/
instance-types/. Retrieved April 21, 2015.

4. D. J. Bernstein. Cache-timing attacks on AES. Technical report, Department of
Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,
2005.

5. L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev. Non-
Monopolizable Caches: Low-Complexity Mitigation of Cache Side Channel Attacks.
ACM Transactions on Architecture and Code Optimization (TACO), 8(4), 2011.

6. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of 2nd
International Conference on Knowledge Discovery and Data Mining (KDD’96),
1996.

7. B. Farley, V. Varadarajan, K. D. Bowers, A. Juels, T. Ristenpart, and M. M. Swift.
More for Your Money: Exploiting Performance Heterogeneity in Public Clouds. In
Proceedings of the 3rd ACM Symposium on Cloud Computing (SOCC’12), 2012.

8. D. Gullasch, E. Bangerter, and S. Krenn. Cache Games – Bringing Access-Based
Cache Attacks on AES to Practice. In S&P’11, 2011.

9. W.-M. Hu. Lattice Scheduling and Covert Channels. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 52–61, 1992.

10. R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel Attacks against
Kernel Space ASLR. In 2013 IEEE Symposium on Security and Privacy, pages
191–205, 2013.

11. Intel. How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruc-
tion Set Architectures White Paper, 2010.

12. Intel. Intel R© 64 and IA-32 Architectures Optimization Reference Manual. 2014.
13. G. Irazoqui Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Fine grain Cross-

VM Attacks on Xen and VMware are possible! Cryptology ePrint Archive, Report
2014/248, 2014.

14. G. Irazoqui Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a minute!
A fast, Cross-VM attack on AES. In RAID’14, 2014.

15. T. Kim, M. Peinado, and G. Mainar-Ruiz. StealthMem: system-level protection
against cache-based side channel attacks in the cloud. In Proceedings of the 21st
USENIX Security Symposium, 2012.

16. T. Kohno, A. Broido, and K. Claffy. Remote Physical Device Fingerprinting. In
IEEE Transactions on Dependable and Secure Computing, volume 2, pages 93–108,
2005.

C5: Cross-Cores Cache Covert Channel 19

17. S. J. Murdoch. Hot or Not: Revealing Hidden Services by their Clock Skew. In
CCS’06, 2006.

18. M. Neve and J.-P. Seifert. Advances on Access-Driven Cache Attacks on AES. In
Proceedings of the 13th international conference on Selected areas in cryptography
(SAC’06), 2006.

19. D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures: the
Case of AES. In CT-RSA 2006, 2006.

20. Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui. Exploiting Hardware
Heterogeneity within the Same Instance Type of Amazon EC2. In HotCloud’12,
2012.

21. C. Percival. Cache missing for fun and profit. In Proceedings of BSDCan, 2005.
22. M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive insertion

policies for high performance caching. ACM SIGARCH Computer Architecture
News, 35(2):381, 2007.

23. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get Off of
My Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In
CCS’09, 2009.

24. E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on AES, and
Countermeasures. Journal of Cryptology, 23(1):37–71, July 2010.

25. Z. Wang and R. B. Lee. New cache designs for thwarting software cache-based side
channel attacks. ACM SIGARCH Computer Architecture News, 35(2):494, June
2007.

26. Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space: High-speed Covert
Channel Attacks in the Cloud. In USENIX Security Symposium, 2012.

27. Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting. An
exploration of L2 cache covert channels in virtualized environments. In Proceedings
of the 3rd ACM Cloud Computing Security Workshop (CCSW’11), 2011.

28. Y. Yarom and K. Falkner. Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In USENIX Security Symposium, 2014.

29. Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone: Co-residency Detec-
tion in the Cloud via Side-Channel Analysis. In S&P’11, 2011.

30. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side channels and
their use to extract private keys. In CCS’12, 2012.

31. Y. Zhang and M. Reiter. Düppel: retrofitting commodity operating systems to
mitigate cache side channels in the cloud. In CCS’13, 2013.

