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ABSTRACT
To optimize the energy consumption and performance of their
CPUs, AMD introduced a way predictor for the L1-data (L1D) cache
to predict in which cache way a certain address is located. Conse-
quently, only this way is accessed, significantly reducing the power
consumption of the processor.

In this paper, we are the first to exploit the cache way predic-
tor. We reverse-engineered AMD’s L1D cache way predictor in
microarchitectures from 2011 to 2019, resulting in two new attack
techniques. With Collide+Probe, an attacker can monitor a vic-
tim’s memory accesses without knowledge of physical addresses
or shared memory when time-sharing a logical core. With Load+
Reload, we exploit the way predictor to obtain highly-accurate
memory-access traces of victims on the same physical core. While
Load+Reload relies on shared memory, it does not invalidate the
cache line, allowing stealthier attacks that do not induce any last-
level-cache evictions.

We evaluate our new side channel in different attack scenarios.
We demonstrate a covert channel with up to 588.9 kB/s, which we
also use in a Spectre attack to exfiltrate secret data from the kernel.
Furthermore, we present a key-recovery attack from a vulnerable
cryptographic implementation. We also show an entropy-reducing
attack on ASLR of the kernel of a fully patched Linux system, the
hypervisor, and our own address space from JavaScript. Finally, we
propose countermeasures in software and hardware mitigating the
presented attacks.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Operating systems security.
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1 INTRODUCTION
With caches, out-of-order execution, speculative execution, or si-
multaneous multithreading (SMT), modern processors are equipped
with numerous features optimizing the system’s throughput and
power consumption. Despite their performance benefits, these op-
timizations are often not designed with a central focus on security
properties. Hence, microarchitectural attacks have exploited these
optimizations to undermine the system’s security.

Cache attacks on cryptographic algorithms were the first mi-
croarchitectural attacks [12, 42, 59]. Osvik et al. [58] showed that
an attacker can observe the cache state at the granularity of a cache
set using Prime+Probe. Yarom et al. [82] proposed Flush+Reload,
a technique that can observe victim activity at a cache-line granu-
larity. Both Prime+Probe and Flush+Reload are generic techniques
that allow implementing a variety of different attacks, e.g., on cryp-
tographic algorithms [12, 15, 50, 54, 59, 63, 66, 82, 84], web server
function calls [85], user input [31, 48, 83], and address layout [25].
Flush+Reload requires shared memory between the attacker and
the victim. When attacking the last-level cache, Prime+Probe re-
quires it to be shared and inclusive. While some Intel processors
do not have inclusive last-level caches anymore [81], AMD always
focused on non-inclusive or exclusive last-level caches [38]. With-
out inclusivity and shared memory, these attacks do not apply to
AMD CPUs.

With the recent transient-execution attacks, adversaries can di-
rectly exfiltrate otherwise inaccessible data on the system [41, 49,
68, 74, 75]. However, AMD’s microarchitectures seem to be vul-
nerable to only a few of them [9, 17]. Consequently, AMD CPUs
do not require software mitigations with high performance penal-
ties. Additionally, with the performance improvements of the latest
microarchitectures, the share of AMD CPU’s used is currently in-
creasing in the cloud [10] and consumer desktops [34].

Since the Bulldozer microarchitecture [6], AMD uses an L1D
cache way predictor in their processors. The predictor computes a
µTag using an undocumented hash function on the virtual address.
This µTag is used to look up the L1D cache way in a prediction
table. Hence, the CPU has to compare the cache tag in only one
way instead of all possible ways, reducing the power consumption.

In this paper, we present the first attacks on cache way predictors.
For this purpose, we reverse-engineered the undocumented hash
function of AMD’s L1D cache way predictor in microarchitectures
from 2001 up to 2019. We discovered two different hash functions
that have been implemented in AMD’s way predictors. Knowledge
of these functions is the basis of our attack techniques. In the
first attack technique, Collide+Probe, we exploit µTag collisions of

https://doi.org/10.1145/3320269.3384746
https://doi.org/10.1145/3320269.3384746


ASIA CCS ’20, June 1–5, 2020, Taipei, Taiwan Lipp, et al.

virtual addresses to monitor the memory accesses of a victim time-
sharing the same logical core. Collide+Probe does not require shared
memory between the victim and the attacker, unlike Flush+Reload,
and no knowledge of physical addresses, unlike Prime+Probe. In the
second attack technique, Load+Reload, we exploit the property that
a physical memory location can only reside once in the L1D cache.
Thus, accessing the same location with a different virtual address
evicts the location from the L1D cache. This allows an attacker to
monitor memory accesses on a victim, even if the victim runs on a
sibling logical core. Load+Reload is on par with Flush+Reload in
terms of accuracy and can achieve a higher temporal resolution
as it does not invalidate a cache line in the entire cache hierarchy.
This allows stealthier attacks that do not induce last-level-cache
evictions.

We demonstrate the implications of Collide+Probe and Load+
Reload in different attack scenarios. First, we implement a covert
channel between two processes with a transmission rate of up to
588.9 kB/s outperforming state-of-the-art covert channels. Second,
we use µTag collisions to reduce the entropy of different ASLR
implementations. We break kernel ASLR on a fully updated Linux
system and demonstrate entropy reduction on user-space appli-
cations, the hypervisor, and even on our own address space from
sandboxed JavaScript. Furthermore, we successfully recover the
secret key using Collide+Probe on an AES T-table implementation.
Finally, we use Collide+Probe as a covert channel in a Spectre attack
to exfiltrate secret data from the kernel. While we still use a cache-
based covert channel, in contrast to previous attacks [41, 44, 51, 70],
we do not rely on shared memory between the user application and
the kernel. We propose different countermeasures in software and
hardware, mitigating Collide+Probe and Load+Reload on current
systems and in future designs.

Contributions.The main contributions are as follows:
(1) We reverse engineer the L1D cache way predictor of AMD

CPUs and provide the addressing functions for virtually all
microarchitectures.

(2) We uncover the L1D cache way predictor as a source of
side-channel leakage and present two new cache-attack tech-
niques, Collide+Probe and Load+Reload.

(3) We show that Collide+Probe is on par with Flush+Reload
and Prime+Probe but works in scenarios where other cache
attacks fail.

(4) We demonstrate and evaluate our attacks in sandboxed
JavaScript and virtualized cloud environments.

Responsible Disclosure.We responsibly disclosed our findings to
AMD on August 23rd, 2019.

Outline. Section 2 provides background information on CPU
caches, cache attacks, way prediction, and simultaneous multi-
threading (SMT). Section 3 describes the reverse engineering of the
way predictor that is necessary for our Collide+Probe and Load+
Reload attack techniques outlined in Section 4. In Section 5, we
evaluate the attack techniques in different scenarios. Section 6 dis-
cusses the interactions between the way predictor and other CPU
features. We propose countermeasures in Section 7 and conclude
our work in Section 8.

2 BACKGROUND
In this section, we provide background on CPU caches, cache at-
tacks, high-resolution timing sources, simultaneous multithreading
(SMT), and way prediction.

2.1 CPU Caches
CPU caches are a type of memory that is small and fast, that the
CPU uses to store copies of data from main memory to hide the
latency of memory accesses. Modern CPUs have multiple cache
levels, typically three, varying in size and latency: the L1 cache is
the smallest and fastest, while the L3 cache, also called the last-level
cache, is bigger and slower.

Modern caches are set-associative, i.e., a cache line is stored in a
fixed set determined by either its virtual or physical address. The L1
cache typically has 8 ways per set, and the last-level cache has 12 to
20 ways, depending on the size of the cache. Each line can be stored
in any of the ways of a cache set, as determined by the replacement
policy. While the replacement policy for the L1 and L2 data cache
on Intel is most of the time pseudo least-recently-used (LRU) [1],
the replacement policy for the last-level cache (LLC) can differ [79].
Intel CPUs until Sandy Bridge use pseudo least-recently-used (LRU),
for newer microarchitectures it is undocumented [79].

The last-level cache is physically indexed and shared across cores
of the same CPU. In most Intel implementations, it is also inclusive
of L1 and L2, which means that all data in L1 and L2 is also stored
in the last-level cache. On AMD Zen processors, the L1D cache is
virtually indexed and physically tagged (VIPT). The last-level cache
is a non-inclusive victim cache. To maintain this property, every
line evicted from the last-level cache is also evicted from L1 and
L2. The last-level cache, though shared across cores, is also divided
into slices. The undocumented hash function that maps physical
addresses to slices in Intel CPUs has been reverse-engineered [52].

2.2 Cache Attacks
Cache attacks are based on the timing difference between accessing
cached and non-cached memory. They can be leveraged to build
side-channel attacks and covert channels. Among cache attacks,
access-driven attacks are the most powerful ones, where an attacker
monitors its own activity to infer the activity of its victim. More
specifically, an attacker detects which cache lines or cache sets the
victim has accessed.

Access-driven attacks can further be categorized into two types,
depending on whether or not the attacker shares memory with
its victim, e.g., using a shared library or memory deduplication.
Flush+Reload [82], Evict+Reload [31] and Flush+Flush [30] all rely
on shared memory that is also shared in the cache to infer whether
the victim accessed a particular cache line. The attacker evicts the
shared data either by using the clflush instruction (Flush+Reload
and Flush+Flush), or by accessing congruent addresses, i.e., cache
lines that belong to the same cache set (Evict+Reload). These at-
tacks have a very fine granularity (i.e., a 64-byte memory region),
but they are not applicable if shared memory is not available in the
corresponding environment. Especially in the cloud, shared mem-
ory is usually not available across VMs as memory deduplication is
disabled for security concerns [76]. Irazoqui et al. [38] showed that
an attack similar to Flush+Reload is also possible in a cross-CPU
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attack. It exploits that cache invalidations (e.g., from clflush) are
propagated to all physical processors installed in the same system.
When reloading the data, as in Flush+Reload, they can distinguish
the timing difference between a cache hit in a remote processor
and a cache miss, which goes to DRAM.

The second type of access-driven attacks, called Prime+Probe [37,
50, 59], does not rely on shared memory and is, thus, applicable to
more restrictive environments. As the attacker has no shared cache
line with the victim, the clflush instruction cannot be used. Thus,
the attacker has to access congruent addresses instead (cf. Evict+
Reload). The granularity of the attack is coarser, i.e., an attacker only
obtains information about the accessed cache set. Hence, this attack
is more susceptible to noise. In addition to the noise caused by other
processes, the replacement policy makes it hard to guarantee that
data is actually evicted from a cache set [29].

With the general development to switch from inclusive caches to
non-inclusive caches, Intel introduced cache directories. Yan et al.
[81] showed that the cache directory is still inclusive, and an at-
tacker can evict a cache directory entry of the victim to invalidate
the corresponding cache line. This allows mounting Prime+Probe
and Evict+Reload attacks on the cache directory. They also ana-
lyzed whether the same attack works on AMD Piledriver and Zen
processors and discovered that it does not, because these processors
either do not use a directory or use a directory with high associa-
tivity, preventing cross-core eviction either way. Thus, it remains
to be answered what types of eviction-based attacks are feasible on
AMD processors and on which microarchitectural structures.

2.3 High-resolution Timing
For most cache attacks, the attacker requires a method to measure
timing differences in the range of a few CPU cycles. The rdtsc
instruction provides unprivileged access to a model-specific register
returning the current cycle count and is commonly used for cache
attacks on Intel CPUs. Using this instruction, an attacker can get
timestamps with a resolution between 1 and 3 cycles on modern
CPUs. On AMD CPUs, this register has a cycle-accurate resolution
until the Zen microarchitecture. Since then, it has a significantly
lower resolution as it is only updated every 20 to 35 cycles (cf.
Appendix A). Thus, rdtsc is only sufficient if the attacker can
repeat the measurement and use the average timing differences
over all executions. If an attacker tries to monitor one-time events,
the rdtsc instruction on AMD cannot directly be used to observe
timing differences, which are only a few CPU cycles.

The AMD Ryzen microarchitecture provides the Actual Perfor-
mance Frequency Clock Counter (APERF counter) [7] which can be
used to improve the accuracy of the timestamp counter. However,
it can only be accessed in kernel mode. Although other timing
primitives provided by the kernel, such as get_monotonic_time,
provide nanosecond resolution, they can be more noisy and still
not sufficiently accurate to observe timing differences, which are
only a few CPU cycles.

Hence, on more recent AMD CPUs, it is necessary to resort to a
different method for timing measurements. Lipp et al. [48] showed
that counting threads can be used on ARM-based devices where
unprivileged high-resolution timers are unavailable. Schwarz et al.
[66] showed that a counting thread can have a higher resolution

than the rdtsc instruction on Intel CPUs. A counting thread con-
stantly increments a global variable used as a timestamp without
relying on microarchitectural specifics and, thus, can also be used
on AMD CPUs.

2.4 Simultaneous Multithreading (SMT)
Simultaneous Multithreading (SMT) allows optimizing the effi-
ciency of superscalar CPUs. SMT enables multiple independent
threads to run in parallel on the same physical core sharing the
same resources, e.g., execution units and buffers. This allows uti-
lizing the available resources better, increasing the efficiency and
throughput of the processor. While on an architectural level, the
threads are isolated from each other and cannot access data of other
threads, on a microarchitectural level, the same physical resources
may be used. Intel introduced SMT as Hyperthreading in 2002. AMD
introduced 2-way SMT with the Zen microarchitecture in 2017.

Recently, microarchitectural attacks also targeted different shared
resources: the TLB [24], store buffer [16], execution ports [2, 13],
fill-buffers [68, 75], and load ports [68, 75].

2.5 Way Prediction
To look up a cache line in a set-associative cache, bits in the address
determine in which set the cache line is located. With an n-way
cache, n possible entries need to be checked for a tag match. To
avoid wasting power for n comparisons leading to a single match,
Inoue et al. [36] presented way prediction for set-associative caches.
Instead of checking all ways of the cache, a way is predicted, and
only this entry is checked for a tag match. As only one way is
activated, the power consumption is reduced. If the prediction is
correct, the access has been completed, and access times similar to
a direct-mapped cache are achieved. If the prediction is incorrect, a
normal associative check has to be performed.

We only describe AMD’s way predictor [8, 23] in more detail
in the following section. However, other CPU manufacturers hold
patents for cache way prediction as well [56, 64]. CPU’s like the
Alpha 21264 [40] also implement way prediction to combine the
advantages of set-associative caches and the fast access time of a
direct-mapped cache.

3 REVERSE-ENGINEERING AMDS WAY
PREDICTOR

In this section, we explain how to reverse-engineer the L1D way
predictor used in AMD CPUs since the Bulldozer microarchitecture.
First, we explain how the AMD L1D way predictor predicts the
L1D cache way based on hashed virtual addresses. Second, we
reverse-engineer the undocumented hash function used for the way
prediction in different microarchitectures. With the knowledge of
the hash function and how the L1D way predictor works, we can
then build powerful side-channel attacks exploiting AMD’s way
predictor.

3.1 Way Predictor
Since the AMD Bulldozer microarchitecture, AMD uses a way pre-
dictor in the L1 data cache [6]. By predicting the cache way, the CPU
only has to compare the cache tag in one way instead of all ways.
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Figure 1: Simplified illustration of AMD’s way predictor.

While this reduces the power consumption of an L1D lookup [8], it
may increase the latency in the case of a misprediction.

Every cache line in the L1D cache is tagged with a linear-address-
based µTag [8, 23]. This µTag is computed using an undocumented
hash function, which takes the virtual address as the input. For
every memory load, the way predictor predicts the cache way of
every memory load based on this µTag. As the virtual address, and
thus the µTag, is known before the physical address, the CPU does
not have to wait for the TLB lookup. Figure 1 illustrates AMD’s
way predictor. If there is no match for the calculated µTag, an early
miss is detected, and a request to L2 issued.

Aliased cache lines can induce performance penalties, i.e., two
different virtual addresses map to the same physical location. As
VIPT caches with a size lower or equal the number of ways multi-
plied by the page size behave functionally like PIPT caches. Hence,
there are no duplicates for aliased addresses and, thus, in such a
case where data is loaded from an aliased address, the load sees an
L1D cache miss and thus loads the data from the L2 data cache [8].
If there are multiple memory loads from aliased virtual addresses,
they all suffer an L1D cache miss. The reason is that every load
updates the µTag and thus ensures that any other aliased address
sees an L1D cache miss [8]. In addition, if two different virtual
addresses yield the same µTag, accessing one after the other yields
a conflict in the µTag table. Thus, an L1D cache miss is suffered,
and the data is loaded from the L2 data cache.

3.2 Hash Function
The L1D way predictor computes a hash (µTag) from the virtual
address, which is used for the lookup to the way-predictor table.
We assume that this undocumented hash function is linear based
on the knowledge of other such hash functions, e.g., the cache-slice
function of Intel CPUs [52], the DRAM-mapping function of Intel,
ARM, and AMD CPUs [5, 60, 71], or the hash function for indirect
branch prediction on Intel CPUs [41]. Moreover, we expect the size
of the µTag to be a power of 2, resulting in a linear function.

We rely on µTag collisions to reverse-engineer the hash function.
We pick two random virtual addresses that map to the same cache
set. If the two addresses have the same µTag, repeatedly accessing
them one after the other results in conflicts. As the data is then
loaded from the L2 cache, we can either measure an increased access
time or observe an increased number in the performance counter
for L1 misses, as illustrated in Figure 2.

Creating Sets.With the ability to detect conflicts, we can build
N sets representing the number of entries in the µTag table. First,
we create a pool v of virtual addresses, which all map to the same
cache set, i.e., where bits 6 to 11 of the virtual address are the same.
We start with one set S0 containing one random virtual address
out of the pool v . For each other randomly-picked address vx , we
measure the access time while alternatively accessing vx and an
address from each set S0...n . If we encounter a high access time,
we measure conflicts and add vx to that set. If vx does not conflict
with any existing set, we create a new set Sn+1 containing vx .

In our experiments, we recovered 256 sets. Due to measurement
errors caused by system noise, there are sets with single entries
that can be discarded. Furthermore, to retrieve all sets, we need to
make sure to test against virtual addresses where a wide range of
bits is set covering the yet unknown bits used by the hash function.

Recovering the Hash Function.Every virtual address, which is in
the same set, produces the same hash. To recover the hash function,
we need to find which bits in the virtual address are used for the
8 output bits that map to the 256 sets. Due to its linearity, each
output bit of the hash function can be expressed as a series of XORs
of bits in the virtual address. Hence, we can express the virtual
addresses as an over-determined linear equation system in finite
field 2, i.e., GF(2). The solutions of the equation system are then
linear functions that produce the µTag from the virtual address.

To build the equation system, we use each of the virtual addresses
in the 256 sets. For every virtual address, the b bits of the virtual
address a are the coefficients, and the bits of the hash function x are
the unknown. The right-hand side of the equation y is the same for
all addresses in the set. Hence, for every address a in set s , we get
an equation of the form ab−1xb−1 ⊕ ab−2xb−2 ⊕ · · · ⊕ a12x12 = ys .

While the least-significant bits 0-5 define the cache line offset,
note that bits 6-11 determine the cache set and are not used for the
µTag computation [8]. To solve the equation system, we used the
Z3 SMT solver. Every solution vector represents a function which
XORs the virtual-address bits that correspond to ‘1’-bits in the
solution vector. The hash function is the set of linearly independent
functions, i.e., every linearly independent function yields one bit
of the hash function. The order of the bits cannot be recovered.
However, this is not relevant, as we are only interested whether
addresses collide, not in their numeric µTag value.

We successfully recovered the undocumented µTag hash func-
tion on the AMD Zen, Zen+ and Zen 2 microarchitecture. The
function illustrated in Figure 3a uses bits 12 to 27 to produce an
8-bit value mapping to one of the 256 sets:

h(v) = (v12 ⊕ v27) ∥ (v13 ⊕ v26) ∥ (v14 ⊕ v25) ∥ (v15 ⊕ v20) ∥

(v16 ⊕ v21) ∥ (v17 ⊕ v22) ∥ (v18 ⊕ v23) ∥ (v19 ⊕ v24)

We recovered the same function for various models of the AMD
Zen microarchitectures that are listed in Table 1. For the Bulldozer
microarchitecture (FX-4100), the Piledriver microarchitecture (FX-
8350), and the Steamroller microarchitecture (A10-7870K), the hash
function uses the same bits but in a different combination Figure 3b.

3.3 Simultaneous Multithreading
As AMD introduced simultaneous multithreading starting with the
Zen microarchitecture, the filed patent [23] does not cover any
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Figure 3: The recovered hash functions use bits 12 to 27 of
the virtual address to compute the µTag.

insights on how the way predictor might handle multiple threads.
While the way predictor has been used since the Bulldozer microar-
chitecture [6], parts of the way predictor have only been docu-
mented with the release of the Zen microarchitecture [8]. However,
the influence of simultaneous multithreading is not mentioned.

Typically, two sibling threads can either share a hardware struc-
ture competitively with the option to tag entries or by statically
partitioning them. For instance, on the Zen microarchitecture, ex-
ecution units, schedulers, or the cache are competitively shared,
and the store queue and retire queue are statically partitioned [18].
Although the load queue, as well as the instruction and data TLB,
are competitively shared between the threads, the data in these
structures can only be accessed by the thread owning it.

Under the assumption that the data structures of the way pre-
dictor are competitively shared between threads, one thread could
directly influence the sibling thread, enabling cross-thread attacks.
We validate this assumption by accessing two addresses with the
same µTag on both threads. However, we do not observe collisions,
neither bymeasuring the access time nor in the number of L1misses.
While we reverse-engineered the same mapping function (see Sec-
tion 3.2) for both threads, the possibility remains that additional
per-thread information is used for selecting the data-structure entry,
allowing one thread to evict entries of the other.

Hence, we extend the experiment in accessing addressesmapping
to all possible µTags on one hardware thread (and all possible cache
sets). While we repeatedly accessed one of these addresses on one
hardware thread, we measure the number of L1 misses to a single
virtual address on the sibling thread. However, we are not able to
observe any collisions and, thus, conclude that either individual
structures are used per thread or that they are shared but tagged for
each thread. The only exceptions are aliased loads as the hardware
updates the µTag in the aliased way (see Section 3.1).

In another experiment, we measure access times of two virtual
addresses that are mapped to the same physical address. As docu-
mented [8], loads to an aliased address see an L1D cache miss and,
thus, load the data from the L2 data cache. While we verified this
behavior, we additionally observed that this is also the case if the
other thread performs the other load. Hence, the structure used is
searched by the sibling thread, suggesting a competitively shared
structure that is tagged with the hardware threads.

4 USING THEWAY PREDICTOR FOR SIDE
CHANNELS

In this section, we present two novel side channels that leverage
AMD’s L1D cache way predictor. With Collide+Probe, we moni-
tor memory accesses of a victim’s process without requiring the
knowledge of physical addresses. With Load+Reload, while relying
on shared memory similar to Flush+Reload, we can monitor mem-
ory accesses of a victim’s process running on the sibling hardware
thread without invalidating the targeted cache line from the entire
cache hierarchy.

4.1 Collide+Probe
Collide+Probe is a new cache side channel exploiting µTag collisions
in AMD’s L1D cache way predictor. As described in Section 3, the
way predictor uses virtual-address-based µTags to predict the L1D
cache way. If an address is accessed, the µTag is computed, and the
way-predictor entry for this µTag is updated. If a subsequent access
to a different address with the same µTag is performed, a µTag
collision occurs, and the data has to be loaded from the L2D cache,
increasing the access time. With Collide+Probe, we exploit this
timing difference to monitor accesses to such colliding addresses.

Threat Model. For this attack, we assume that the attacker has un-
privileged native code execution on the target machine and runs on
the same logical CPU core as the victim. Furthermore, the attacker
can force the execution of the victim’s code, e.g., via a function call
in a library or a system call.

Setup.The attacker first chooses a virtual address v of the victim
that should be monitored for accesses. This can be an arbitrary
valid address in the victim’s address space. There are no constraints
in choosing the address. The attacker can then compute the µTag
µv of the target address using the hash function from Section 3.2.
We assume that ASLR is either not active or has already been
broken (cf. Section 5.2). However, although with ASLR, the actual
virtual address used in the victim’s process are typically unknown
to the attacker, it is still possible to mount an attack. Instead of
choosing a virtual address, the attacker initially performs a cache
template attack [31] to detect which of 256 possible µTags should
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be monitored. Similar to Prime+Probe [58], where the attacker
monitors the activity of cache sets, the attacker monitors µTag
collisions while triggering the victim.

Attack.To mount a Collide+Probe attack, the attacker selects a
virtual address v ′ in its own address space that yields the same
µTag µv ′ as the target address v , i.e., µv = µv ′ . As there are only
256 different µTags, this can easily be done by randomly choosing
addresses until the chosen address has the same µTag. Moreover,
bothv andv ′ have to be in the same cache set. However, this is easily
satisfiable, as the cache set is determined by bits 6-11 of the virtual
address. The attack consists of 3 phases performed repeatedly:

Phase 1: Collide. In the first phase, the attacker accesses the
pre-computed address v ′ and, thus, updates the way predictor. The
way predictor associates the cache line of v ′ with its µTag µv ′ and
subsequent memory accesses with the same µTag are predicted to
be in the same cache way. Since the victim’s addressv has the same
µTag (µv = µv ′), the µTag of that cache line is marked invalid and
the data is effectively inaccessible from the L1D cache.

Phase 2: Scheduling the victim. In the second phase, the vic-
tim is scheduled to perform its operations. If the victim does not
access the monitored address v , the way predictor remains in the
same state as set up by the attacker. Thus, the attacker’s data is still
accessible from the L1D cache. However, if the victim performs an
access to the monitored address v , the way predictor is updated
again causing the attacker’s data to be inaccessible from L1D.

Phase 3: Probe. In the third and last phase of the attack, the
attacker measures the access time to the pre-computed addressv ′. If
the victim has not accessed the monitored addressv , the data of the
pre-computed address v ′ is still accessible from the L1D cache and
the way prediction is correct. Thus, the measured access time is fast.
If the victim has accessed the monitored addressv and thus changed
the state of the way predictor, the attacker suffers an L1D cachemiss
when accessing v ′, as the prediction is now incorrect. The data of
the pre-computed address v ′ is loaded from the L2 cache and, thus,
the measured access time is slow. By distinguishing between these
cases, the attacker can deduce whether the victim has accessed the
targeted data.

Listing 1 shows an implementation of the Collide+Probe attack
where the colliding address colliding_address is computed be-
forehand. The code closely follows the three attack phases. First,
the colliding address is accessed. Then, the victim is scheduled, il-
lustrated by the run_victim function. Afterwards, the access time
to the same address is measured where the get_time function is
implemented using a timing source discussed in Section 2.3. The
measured access time allows the attacker to distinguish between an
L1D cache hit and an L2-cache hit and, thus, deduce if the victim
has accessed the targeted address. As other accesses with the same
cache set influence the measurements, the attacker can repeat the
experiment to average out the measured noise.

Comparison to Other Cache Attacks. Finally, we want to discuss
the advantages and disadvantages of the Collide+Probe attack in
comparison to other cache side-channel attacks. In contrast to
Prime+Probe, no knowledge of physical addresses is required as
the way predictor uses the virtual address to compute µTags. Thus,
with native code execution, an attacker can find addresses corre-
sponding to a specific µTag without any effort. Another advantage

1 access(colliding_address);
2 run_victim();
3 size_t begin = get_time();
4 access(colliding_address);
5 size_t end = get_time() − begin;
6 if ((end − begin) > THRESHOLD) report_event();

Listing 1: Implementation of the Collide+Probe attack

of Collide+Probe over Prime+Probe is that a single memory load is
enough to guarantee that a subsequent load with the same µTag
is served from the L2 cache. With Prime+Probe, multiple loads
are required to ensure that the target address is evicted from the
cache. In modern Prime+Probe attacks, the last-level cache is tar-
geted [37, 48, 50, 63, 67], and knowledge of physical addresses is
required to compute both the cache set and cache slice [52]. While
Collide+Probe requires knowledge of virtual addresses, they are
typically easier to get than physical addresses. In contrast to Flush+
Reload, Collide+Probe does neither require any specific instruc-
tions like clflush nor shared memory between the victim and the
attacker. A disadvantage is that distinguishing L1D from L2 hits
in Collide+Probe requires a timing primitive with higher precision
than required to distinguish cache hits frommisses in Flush+Reload.

4.2 Load+Reload
Load+Reload exploits the way predictor’s behavior for aliased ad-
dress, i.e., virtual addresses mapping to the same physical address.
When accessing data through a virtual-address alias, the data is
always requested from the L2 cache instead of the L1D cache [8]. By
monitoring the performance counter for L1 misses, we also observe
this behavior across hardware threads. Consequently, this allows
one thread to evict shared data used by the sibling thread with a
single load. Although the requested data is stored in the L1D cache,
it remains inaccessible for the other thread and, thus, introduces a
timing difference when it is accessed.

Threat Model. For this attack, we assume that the attacker has
unprivileged native code execution on the target machine. The
attacker and victim run simultaneously on the same physical but
different logical CPU thread. The attack target is a memory location
with virtual address v shared between the attacker and victim, e.g.,
a shared library.

Attack. Load+Reload exploits the timing difference when access-
ing a virtual-address aliasv ′ to build a cross-thread attack on shared
memory. The attack consists of 3 phases:

Phase 1: Load. In contrast to Flush+Reload, where the targeted
address v is flushed from the cache hierarchy, Load+Reload loads
an address v ′ with the same physical tag as v in the first phase.
Thereby, it renders the cache line containing v inaccessible from
the L1D cache for the sibling thread.

Phase 2: Scheduling the victim. In the second phase, the vic-
tim process is scheduled. If the victim process accesses the targeted
cache line with address v , it sees an L1D cache miss. As a result, it
loads the data from the L2 cache, invalidating the attacker’s cache
line with address v ′ in the process.

Phase 3: Reload. In the third phase, the attacker measures the
access time to the address v ′. If the victim process has accessed the
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cache line with address v , the attacker observes an L1D cache miss
and loads the data from the L2 cache, resulting in a higher access
time. Otherwise, if the victim has not accessed the cache line with
address v , it is still accessible in the L1D cache for the attacker and,
thus, a lower access time is measured. By distinguishing between
both cases, the attacker can deduce whether the victim has accessed
the address v .

Comparison with Flush+Reload.While Flush+Reload invalidates a
cache line from the entire cache hierarchy, Load+Reload only evicts
the data for the sibling thread from the L1D. Thus, Load+Reload is
limited to cross-thread scenarios, while Flush+Reload is applicable
to cross-core scenarios too.

5 CASE STUDIES
To demonstrate the impact of the side channel introduced by the
µTag, we implement different attack scenarios. In Section 5.1, we
implement a covert channel between two processes with a transmis-
sion rate of up to 588.9 kB/s outperforming state-of-the-art covert
channels. In Section 5.2, we break kernel ASLR, demonstrate how
user-space ASLR can be weakened, and reduce the ASLR entropy
of the hypervisor in a virtual-machine setting. In Section 5.3, we
use Collide+Probe as a covert channel to extract secret data from
the kernel in a Spectre attack. In Section 5.4, we recover secret keys
in AES T-table implementations.

Timing Measurement.As explained in Section 2.3, we cannot rely
on the rdtsc instruction for high-resolution timestamps on AMD
CPUs since the Zen microarchitecture. As we use recent AMD
CPUs for our evaluation, we use a counting thread (cf. Section 2.3)
running on the sibling logical CPU core for most of our experiments
if applicable. In other cases, e.g., a covert channel scenario, the
counting thread runs on a different physical CPU core.

Environment.We evaluate our attacks on different environments
listed in Table 1, with CPUs from K8 (released 2013) to Zen 2 (re-
leased in 2019). We have reverse-engineered 2 unique hash func-
tions, as described in Section 3. One is the same for all Zen microar-
chitectures, and the other is the same for all previous microarchi-
tectures with a way predictor.

5.1 Covert Channel
A covert channel is a communication channel between two parties
that are not allowed to communicate with each other. Such a covert
channel can be established by leveraging a side channel. The µTag
used by AMD’s L1D way prediction enables a covert channel for
two processes accessing addresses with the same µTag.

For the most simplistic form of the covert channel, two processes
agree on a µTag and a cache set (i.e., the least-significant 12 bits of
the virtual addresses are the same). This µTag is used for sending
and receiving data by inducing and measuring cache misses.

In the initialization phase, both parties allocate their own page.
The sender chooses a virtual address vS , and the receiver chooses
a virtual address vR that fulfills the aforementioned requirements,
i.e., vS and vR are in the same cache set and yield the same µTag.
The µTag can simply be computed using the reverse-engineered
hash function of Section 3.

Table 1: Tested CPUs with their microarchitecture (µ-arch.)
and whether they have a way predictor (WP).

Setup CPU µ-arch. WP
Lab AMD Athlon 64 X2 3800+ K8 ✗

Lab AMD Turion II Neo N40L K10 ✗

Lab AMD Phenom II X6 1055T K10 ✗

Lab AMD E-450 Bobcat ✗

Lab AMD Athlon 5350 Jaguar ✗

Lab AMD FX-4100 Bulldozer ✓

Lab AMD FX-8350 Piledriver ✓

Lab AMD A10-7870K Steamroller ✓

Lab AMD Ryzen Threadripper 1920X Zen ✓

Lab AMD Ryzen Threadripper 1950X Zen ✓

Lab AMD Ryzen Threadripper 1700X Zen ✓

Lab AMD Ryzen Threadripper 2970WX Zen+ ✓

Lab AMD Ryzen 7 3700X Zen 2 ✓

Cloud AMD EPYC 7401p Zen ✓

Cloud AMD EPYC 7571 Zen ✓

To encode a 1-bit to transmit, the sender accesses address vS .
To transmit a 0-bit, the sender does not access address vS . The
receiving end decodes the transmitted information by measuring
the access time when loading addressvR . If the sender has accessed
address vS to transmit a 1, the collision caused by the same µTag
of vS and vR results in a slow access time for the receiver. If the
sender has not accessed address vS , no collision caused the address
vR to be evicted from L1D and, thus, the access time is fast. This
timing difference allows the receiver to decode the transmitted bit.

Different cache-based covert channels use the same side chan-
nel to transmit multiple bits at once. For instance, different cache
lines [30, 48] or different cache sets [48, 53] are used to encode
one bit of information on its own. We extended the described µTag
covert channel to transmit multiple bits in parallel by utilizing mul-
tiple cache sets. Instead of decoding the transmitted bit based on
the timing difference of one address, we use two addresses in two
cache sets for every bit we transmit: One to represent a 1-bit and
the other to represent the 0-bit. As the L1D has 64 cache sets, we
can transmit up to 32 bit in parallel without reusing cache sets.

Performance Evaluation.We evaluated the transmission and er-
ror rate of our covert channel in a local setting and a cloud set-
ting by sending and receiving a randomly generated data blob. We
achieved a maximum transmission rate of 588.9 kB/s (σx̄ = 0.544,
n = 1000) using 80 channels in parallel on the AMD Ryzen Thread-
ripper 1920X. On the AMD EPYC 7571 in the Amazon EC2 cloud, we
achieved a maximum transmission rate of 544.0 kB/s (σx̄ = 0.548,
n = 1000) also using 80 channels. In contrast, L1 Prime+Probe
achieved a transmission rate of 400 kB/s [59] and Flush+Flush a
transmission rate of 496 kB/s [30]. As illustrated in Figure 4, the
mean transmission rate increases with the number of bits sent in
parallel. However, the error rate increases drastically when trans-
mitting more than 64 bits in parallel, as illustrated in Figure 6. As
the number of available different cache sets for our channel is
exhausted for our covert channel, sending more bits in parallel
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Figure 4: Mean transmission rate of the covert channels us-
ing multiple parallel channels on different CPUs.

would reuse already used sets. This increases the chance of wrong
measurements and, thus, the error rate.

Error Correction.As accesses to unrelated addresseswith the same
µTag as our covert channel introduce noise in our measurements,
an attacker can use error correction to achieve better transmission.
Using hamming codes [33], we introduce n additional parity bits
allowing us to detect and correct wrongly measured bits of a packet
with a size of 2n − 1 bits. For our covert channel, we implemented
different Hamming codes H (m,n) that encode n bits by adding
m−n parity bits. The receiving end of the covert channel computes
the parity bits from the received data and compares it with the
received parity bits. Naturally, they only differ if a transmission
error occurred. The erroneous bit position can be computed, and
the bit error corrected by flipping the bit. This allows to detect up
to 2-bit errors and correct one-bit errors for a single transmission.

We evaluated different hamming codes on anAMDRyzen Thread-
ripper 1920X, as illustrated in Figure 7 in Appendix B.When sending
data through 60 parallel channels, theH (7, 4) code reduces the error
rate to 0.14 % (σx̄ = 0.08, n = 1000), whereas the H (15, 11) code
achieves an error rate of 0.16 % (σx̄ = 0.08, n = 1000). While the
H (7, 4) code is slightly more robust [33], theH (15, 11) code achieves
a better transmission rate of 452.2 kB/s (σx̄ = 7.79, n = 1000).

More robust protocols have been used in cache-based covert
channels in the past [48, 53] to achieve error-free communication.
While these techniques can be applied to our covert channel as well,
we leave it up to future work.

Limitations.As we are not able to observe µTag collisions be-
tween two processes running on sibling threads on one physical
core, our covert channel is limited to processes running on the same
logical core.

5.2 Breaking ASLR and KASLR
To exploit a memory corruption vulnerability, an attacker often
requires knowledge of the location of specific data in memory.
With address space layout randomization (ASLR), a basic memory
protection mechanism has been developed that randomizes the
locations of memory sections to impede the exploitation of these
bugs. ASLR is not only applied to user-space applications but also
implemented in the kernel (KASLR), randomizing the offsets of
code, data, and modules on every boot.

In this section, we exploit the relation between virtual addresses
and µTags to reduce the entropy of ASLR in different scenarios.
With Collide+Probe, we can determine the µTags accessed by the
victim, e.g., the kernel or the browser, and use the reverse-engineered

Table 2: Evaluation of the ASLR experiments

Target Entropy Bits Reduced Success Rate Timing Source Time

Linux Kernel 9 7 98.5% thread 0.51 ms (σ = 12.12 µs)
User Process 13 13 88.9% thread 1.94 s (σ = 1.76 s)
Virt. Manager 28 16 90.0% rdtsc 2.88 s (σ = 3.16 s)
Virt. Module 18 8 98.9% rdtsc 0.14 s (σ = 1.74 ms)
Mozilla Firefox 28 15 98.0% web worker 2.33 s (σ = 0.03 s)
Google Chrome 28 15 86.1% web worker 2.90 s (σ = 0.25 s)
Chrome V8 28 15 100.0% rdtsc 1.14 s (σ = 0.03 s)

mapping functions (Section 3.2) to infer bits of the addresses. We
show an additional attack on heap ASLR in Appendix C.

5.2.1 Kernel. On modern Linux systems, the position of the kernel
text segment is randomized inside the 1 GB area from 0xffff ffff
8000 0000 - 0xffff ffff c000 0000 [39, 46]. As the kernel image
is mapped using 2 MB pages, it can only be mapped in 512 different
locations, resulting in 9 bit of entropy [65].

Global variables are stored in the .bss and .data sections of
the kernel image. Since 2 MB physical pages are used, the 21 lower
address bits of a global variable are identical to the lower 21 bits
of the offset within the the kernel image section. Typically, the
kernel image is public and does not differ among users with the
same operating system. With the knowledge of the µTag from the
address of a global variable, one can compute the address bits 21 to
27 using the hash function of AMD’s L1D cache way predictor.

To defeat KASLR using Collide+Probe, the attacker needs to
know the offset of a global variable within the kernel image that is
accessed by the kernel on a user-triggerable event, e.g., a system
call or an interrupt. While not many system calls access global
variables, we found that the SYS_time system call returns the value
of the global second counter obj.xtime_sec. Using Collide+Probe,
the attacker accesses an address v ′ with a specific µTag µv ′ and
schedules the system call, which accesses the global variable with
addressv and µTag µv . Upon returning from the kernel, the attacker
probes the µTag µv ′ using address v ′. On a conflict, the attacker
infers that the address v ′ has the same µTag, i.e., t = µv ′ = µv .
Otherwise, the attacker chooses another address v ′ with a different
µTag µv ′ and repeats the process. As the µTag bits t0 to t7 are known,
the address bits v20 to v27 can be computed from address bits v12
to v19 based on the way predictor’s hash functions (Section 3.2).
Following this approach, we can compute address bits 21 to 27 of
the global variable. As we know the offset of the global variable
inside the kernel image, we can also recover the start address of the
kernel image mapping, leaving only bits 28 and 29 unknown. As
the kernel is only randomized once per boot, the reduction to only
4 address possibilities gives an attacker a significant advantage.

For the evaluation, we tested 10 different randomization offsets
on a Linux 4.15.0-58 kernel with an AMDRyzen Threadripper 1920X
processor. We ran our experiment 1000 times for each randomiza-
tion offset. With a success rate of 98.5 %, we were able to reduce the
entropy of KASLR on average in 0.51 ms (σ = 12.12 µs,n = 10 000).

While there are several microarchitectural KASLR breaks, this
is to the best of our knowledge the first which reportedly works
on AMD and not only on Intel CPUs. Hund et al. [35] measured
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differences in the runtime of page faults when repeatedly access-
ing either valid or invalid kernel addresses on Intel CPUs. Bar-
resi et al. [11] exploited page deduplication to break ASLR: a copy-
on-write pagefault only occurs for the page with the correctly
guessed address. Gruss et al. [28] exploited runtime differences in
the prefetch instruction on Intel CPUs to detect mapped kernel
pages. Jang et al. [39] showed that the difference in access time to
valid and invalid kernel addresses can be measured when suppress-
ing exceptions with Intel TSX. Evtyushkin et al. [22] exploited the
branch-target buffer on Intel CPUs to gain information on mapped
pages. Schwarz et al. [65] showed that the store-to-load forwarding
logic on Intel CPUs is missing a permission check which allows
to detect whether any virtual address is valid. Canella et al. [16]
exploited that recent stores can be leaked from the store buffer on
vulnerable Intel CPUs, allowing to detect valid kernel addresses.

5.2.2 Hypervisor. The Kernel-based Virtual Machine (KVM) is a
virtualization module that allows the Linux kernel to act as a hyper-
visor to runmultiple, isolated environments in parallel called virtual
machines or guests. Virtual machines can communicate with the
hypervisor using hypercalls with the privileged vmcall instruction.
In the past, collisions in the branch target buffer (BTB) have been
used to break hypervisor ASLR [22, 78].

In this scenario, we leak the base address of the KVM kernel
module from a guest virtual machine. We issue hypercalls with
invalid call numbers and monitor, which µTags have been accessed
using Collide+Probe. In our evaluation, we identified two cache sets
enabling us to weaken ASLR of the kvm and the kvm_amd module
with a success rate of 98.8 % and an average runtime of 0.14 s (σ =
1.74 ms,n = 1000). We verified our results by comparing the leaked
address bits with the symbol table (/proc/kallsyms).

Another target is the user-space virtualization manager, e.g.,
QEMU. Guest operating systems can interact with virtualization
managers through various methods, e.g., the out instruction. Like-
wise to the previously described hypercall method, a guest virtual
machine can use this method to trigger the managing user pro-
cess to interact with the guest memory from its own address space.
By using Collide+Probe in this scenario, we were able to reduce
the ASLR entropy by 16 bits with a success rate of 90.0 % with an
average run time of 2.88 s (σ = 3.16 s,n = 1000).

5.2.3 JavaScript. In this section, we show that Collide+Probe is
not only restricted to native environments. We use Collide+Probe
to break ASLR from JavaScript within Chrome and Firefox. As the
JavaScript standard does not define a way to retrieve any address in-
formation, side channels in browsers have been used in the past [57],
also to break ASLR, simplifying browser exploitation [25, 65].

The idea of our ASLR break is similar to the approach of reverse-
engineering the way predictor’s mapping function, as described
in Section 3.2. First, we allocate a large chunk of memory as a
JavaScript typed array. If the requested array length is big enough,
the execution engine allocates it using mmap, placing the array at
the beginning of a memory page [29, 69]. This allows using the
indices within the array as virtual addresses with an additional
constant offset. By accessing pairs of addresses, we can find µTag
collisions allowing us to build an equation system where the only
unknown bits are the bits of the address where the start of the array

is located. As the equation system is very small, an attacker can
trivially solve it in JavaScript.

However, to distinguish between colliding and non-colliding ad-
dresses, we require a high-precision timer in JavaScript. While
the performance.now() function only returns rounded results
for security reasons [3, 14], we leverage an alternative timing
source [25, 69]. For our evaluation, we used the technique of a count-
ing thread constantly incrementing a shared variable [25, 48, 69, 80].

We tested our proof-of-concept in both the Chrome 76.0.3809
and Firefox 68.0.2 web browsers as well as the Chrome V8 stan-
dalone engine. In Firefox, we are able to reduce the entropy by
15 bits with a success rate of 98 % and an average run time of 2.33 s
(σ = 0.03 s,n = 1000). With Chrome, we can correctly reduce the
bits with a success rate of 86.1 % and an average run time of 2.90 s
(σ = 0.25 s,n = 1000). As the JavaScript standard does not provide
any functionality to retrieve the addresses used by variables, we
extended the capabilities of the Chrome V8 engine to verify our re-
sults. We introduced several custom JavaScript functions, including
one that returned the virtual address of an array. This provided us
with the ground truth to verify that our proof-of-concept recovered
the address bits correctly. Inside the extended Chrome V8 engine,
we were able to recover the address bits with a success rate of 100 %
and an average run time of 1.14 s (σ = 0.03 s,n = 1000).

5.3 Leaking Kernel Memory
In this section, we combine Spectre with Collide+Probe to leak
kernel memory without the requirement of shared memory. While
some Spectre-type attacks use AVX [70] or port contention [13],
most attacks use the cache as a covert channel to encode secrets [17,
41]. During transient execution, the kernel caches a user-space ad-
dress based on a secret. By monitoring the presence of said address
in the cache, the attacker can deduce the leaked value.

As AMD CPU’s are not vulnerable to Meltdown [49], stronger
kernel isolation [27] is not enforced on modern operating systems,
leaving the kernel mapped in user space. However, with SMAP
enabled, the processor never loads an address into the cache if the
translation triggers a SMAP violation, i.e., the kernel tries to access
a user-space address [9]. Thus, an attacker has to find a vulnerable
indirect branch that can access user-space memory. We lift this
restriction by using Collide+Probe as a cache-based covert channel
to infer secret values accessed by the kernel. With Collide+Probe,
we can observe µTag collisions based on the secret value that is
leaked and, thus, remove the requirement of shared memory, i.e.,
user memory that is directly accessible to the kernel.

To evaluate Collide+Probe as a covert channel for a Spectre-
type attack, we implement a custom kernel module containing a
Spectre-PHT gadget as illustrated as follows:

1 if (index < bounds) { a = LUT[data[index] * 4096]; }

The execution of the presented code snippet can be triggered
with an ioctl command that allows the user to control the in-
dex variable as it is passed as an argument. First, we mistrain the
branch predictor by repeatedly providing an index that is in bounds,
letting the processor follow the branch to access a fixed kernel-
memory location. Then, we access an address that collides with the
kernel address accessed based on a possible byte-value located at
data[index]. By providing an out-of-bounds index, the processor
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now speculatively accesses a memory location based on the secret
data located at the out-of-bounds index. Using Collide+Probe, we
can now detect if the kernel has accessed the address based on
the assumed secret byte value. By repeating this step for each of
the 256 possible byte values, we can deduce the actual byte as we
observe µTag conflicts. As we cannot ensure that the processor
always misspeculates when providing the out-of-bounds index, we
run this attack multiple times for each byte we want to leak.

We successfully leaked a secret string using Collide+Probe as a
covert channel on an AMD Ryzen Threadripper 1920X. With our
unoptimized version, we are able to leak the secret bytes with a suc-
cess rate of 99.5 % (σx̄ = 0.19,n = 100) and a leakage rate of 0.66 B/s
(σx̄ = 0.00043,n = 100). While we leak full byte values in our proof-
of-concept, other gadgets could allow to leak bit-wise, reducing
the overhead of measuring every possible byte value significantly.
In addition, the parameters for the number of mistrainings or the
necessary repetitions of the attack to leak a byte can be further
tweaked to match the processor under attack. To utilize this side
channel, the attacker requires the knowledge of the address of the
kernel-memory that is accessed by the gadget. Thus, on systems
with active kernel ASLR, the attacker first needs to defeat it. How-
ever, as described in Section 5.2, the attacker can use Collide+Probe
to derandomize the kernel as well.

5.4 Attacking AES T-Tables
In this section, we show an attack on an AES [20] T-table imple-
mentation. While cache attacks have already been demonstrated
against T-table implementations [30, 31, 48, 58, 72] and appropriate
countermeasures, e.g., bit-sliced implementations [43, 62], have
been presented, they serve as a good example to demonstrate the
applicability of the side channel and allow to compare it against
other existing cache side-channels. Furthermore, AES T-tables are
still sometimes used in practice. While some implementations fall
back to T-table implementations [21] if the AES-NI instruction
extension [32] is not available, others only offer T-table-based im-
plementations [45, 55]. For evaluation purposes, we used the T-table
implementation of OpenSSL version 1.1.1c.

In this implementation, the SubBytes, ShiftRows, andMixColumns
steps of the AES round transformation are replaced by look-ups to
4 pre-computed T-tables T0, . . . , T3. As the MixColumns operation
is omitted in the last round, an additional T-table T4 is necessary.
Each table contains 256 4-byte words, requiring 1 kB of memory.

In our proof-of-concept, we mount the first-round attack by
Osvik et al. [58]. Let ki denote the initial key bytes, pi the plaintext
bytes and xi = pi ⊕ ki for i = 0, . . . , 15 the initial state of AES. The
initial state bytes are used to select elements of the pre-computed
T-tables for the following round. An attacker who controls the
plaintext byte pi and monitors which entries of the T-table are
accessed can deduce the key byte ki = si ⊕ pi . However, with a
cache-line size of 64 B, it is only possible to derive the upper 4 bit
of ki if the T-tables are properly aligned in memory. With second-
round and last-round attacks [58, 73] or disaligned T-tables [72],
the key space can be reduced further.

Figure 5 shows the results of a Collide+Probe and a Load+Reload
attack on the AMD Ryzen Threadripper 1920X on the first key
byte. As the first key byte is set to zero, the diagonal shows a
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Figure 5: Cache access patternwithCollide+Probe and Load+
Reload on the first key byte.

higher number of cache hits than the other parts of the table. We
repeated every experiment 1000 times. With Collide+Probe, we can
successfully recover with a probability of 100 % (σx̄ = 0) the upper
4 bits of each ki with 168 867 (σx̄ = 719) encryptions per byte in
0.07 s (σx̄ = 0.0003). With Load+Reload, we require 367 731 (σx̄ =
82388) encryptions and an average runtime of 0.53 s (σx̄ = 0.11) to
recover 99.0 % (σx̄ = 0.0058) of the key bits. Using Prime+Probe on
the L1 cache, we can successfully recover 99.7 % (σx̄ = 0.01) of the
key bits with 450 406 encryptions (σx̄ = 1129) in 1.23 s (σx̄ = 0.003).

6 DISCUSSION
While the official documentation of the way prediction feature
does not explain how it interacts with other processor features, we
discuss the interactions with instruction caches, transient execution,
and hypervisors.

Instruction Caches.The patent [23] describes that AMD’s way
predictor can be used for both data and instruction cache. However,
AMD only documents a way predictor for the L1D cache [8] and
not for the L1I cache.

Transient Execution. Speculative execution is a crucial optimiza-
tion in modern processors. When the CPU encounters a branch,
instead of waiting for the branch condition, the CPU guesses the
outcome and continues the execution in a transient state. If the
speculation was correct, the executed instructions are committed.
Otherwise, they are discarded. Similarly, CPUs employ out-of-order
execution to transiently execute instructions ahead of time as soon
as their dependencies are fulfilled. On an exception, the transiently
executed instructions following the exception are simply discarded,
but leave traces in the microarchitectural state [17]. We investi-
gated the possibility that AMD Zen processors use the data from
the predicted way without waiting for the physical tag returned by
the TLB. However, we were not able to produce any such results.

Hypervisor.AMD does not document any interactions of the way
predictor with virtualization. As we have shown in our experiments
(cf. Section 5.2), the way predictor does not distinguish between
virtual machines and hypervisors. The way predictor uses the vir-
tual address without any tagging, regardless whether it is a guest
or host virtual address.
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7 COUNTERMEASURES
In this section, we discuss mitigations to the presented attacks on
AMD’s way predictor. We first discuss hardware-only mitigations,
followed by mitigations requiring hardware and software changes,
as well as a software-only solution.

Temporarily Disable Way Predictor.One solution lies in designing
the processor in a way that allows temporarily disabling the way
predictor temporarily. Alves et al. [4] evaluated the performance
impact penalty of instruction replays caused by mispredictions. By
dynamically disabling way prediction, they observe a higher perfor-
mance than with standard way prediction. Dynamically disabling
way prediction can also be used to prevent attacks by disabling
it if too many mispredictions within a defined time window are
detected. If an adversary tries to exploit the way predictor or if
the current legitimate workload provokes too many conflicts, the
processor deactivates the way predictor and falls back to compar-
ing the tags from all ways. However, it is unknown whether AMD
processors support this in hardware, and there is no documented
operating system interface to it.

Keyed Hash Function.The currently used mapping functions (Sec-
tion 3) rely solely on bits of the virtual address. This allows an
attacker to reverse-engineer the used function once and easily find
colliding virtual addresses resulting in the same µTag. By keying the
mapping function with an additional process- or context-dependent
secret input, a reverse-engineered hash function is only valid for the
attacker process. ScatterCache [77] and CEASAR-S [61] are novel
cache designs preventing cache attacks by introducing a similar
keyed mapping function for skewed-associative caches. Hence, we
expect that such methods are also effective when used for the way
predictor. Moreover, the key can be updated regularly, e.g., when
returning from the kernel, and, thus, not remain the same over the
execution time of the program.

State Flushing.With Collide+Probe, an attacker cannot monitor
memory accesses of a victim running on a sibling thread. However,
µTag collisions can still be observed after context switches or tran-
sitions between kernel and user mode. To mitigate Collide+Probe,
the state of the way predictor can be cleared when switching to
another user-space application or returning from the kernel. Ev-
ery subsequent memory access yields a misprediction and is thus
served from the L2 data cache. This yields the same result as invali-
dating the L1 data cache, which is currently a required mitigation
technique against Foreshadow [74] and MDS attacks [16, 68, 75].
However, we expect it to be more power-efficient than flushing the
L1D. To mitigate Spectre attacks [41, 44, 51], it is already neces-
sary to invalidate branch predictors upon context switches [17]. As
invalidating predictors and the L1D cache on Intel has been imple-
mented through CPU microcode updates, introducing an MSR to
invalidate the way predictor might be possible on AMD as well.

Uniformly-distributed Collisions.While the previously described
countermeasures rely on either microcode updates or hardware
modifications, we also propose an entirely software-based miti-
gation. Our attack on an optimized AES T-table implementation
in Section 5.4 relies on the fact that an attacker can observe the key-
dependent look-ups to the T-tables. We propose to map such secret

data n times, such that the data is accessible via n different virtual
addresses, which all have a different µTag. When accessing the data,
a random address is chosen out of the n possible addresses. The at-
tacker cannot learn which T-table has been accessed by monitoring
the accessed µTags, as a uniform distribution over all possibilities
will be observed. This technique is not restricted to T-table imple-
mentations but can be applied to virtually any secret-dependent
memory access within an application. With dynamic software di-
versity [19], diversified replicas of program parts are generated
automatically to thwart cache-side channel attacks.

8 CONCLUSION
The key takeaway of this paper is that AMD’s cache way predictors
leak secret information. To understand the implementation details,
we reverse engineered AMD’s L1D cache way predictor, leading
to two novel side-channel attack techniques. First, Collide+Probe
allows monitoring memory accesses on the current logical core
without the knowledge of physical addresses or shared memory.
Second, Load+Reload obtains accurate memory-access traces of
applications co-located on the same physical core.

We evaluated our new attack techniques in different scenarios.
We established a high-speed covert channel and utilized it in a
Spectre attack to leak secret data from the kernel. Furthermore,
we reduced the entropy of different ASLR implementations from
native code and sandboxed JavaScript. Finally, we recovered a key
from a vulnerable AES implementation.

Our attacks demonstrate that AMD’s design is vulnerable to side-
channel attacks. However, we propose countermeasures in software
and hardware, allowing to secure existing implementations and
future designs of way predictors.
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A RDTSC RESOLUTION
We measure the resolution of the rdtsc instruction using the fol-
lowing experimental setup. We assume that the timestamp counter
(TSC) is updated in a fixed interval. This assumption is based on
the documentation in the manual that the timestamp counter is
independent of the CPU frequency [8]. Hence, there is a modulus
x and a constant C , such that TSC mod x ≡ C iff x is the TSC
increment. We can easily find this x with brute-force, i.e., trying
all different x until we find an x , which always results in the same
value C . Table 3 shows a rdtsc increments for the CPUs we tested.
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Figure 6: Error rate of the covert channel.
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Figure 7: Error rate of the covert channel with and without
error correction using different Hamming codes.

B COVERT CHANNEL ERROR RATE
Figure 6 illustrates the error rate of the covert channel described
in Section 5.1. The error rate increases drastically when transmitting
more than 64 bits in parallel. Thus, we evaluated different hamming
codes on an AMD Ryzen Threadripper 1920X (Figure 7).

C USERSPACE ASLR
Linux also uses ASLR for user processes by default. However, ran-
domizing the code section requires compiler support for position-
independent code. The heap memory region is of particular interest
because it is located just after the code section with an offset of up
to 32 MB [47]. User programs use 4 kB pages, giving an effective
13-bit entropy for the start of the brk-based heap memory.

It is possible to fully break heap ASLR through the use of µTags.
An attack requires an interface to the victim application that incurs
a victim access to data on the heap. We evaluated the ASLR break
using a client-server scenario in a toy application, where the at-
tacker is the malicious client. The attacker repeatedly sends benign
requests until it is distinguishable which tag is being accessed by
the victim. This already reduces the ASLR entropy by 8 bits because
it reveals a linear combination of the address bits. It is also possible
to recover all address bits up to bit 27 by using the µTags of multiple
pages and solving the resulting equation system.

Again, a limitation is that the attack is susceptible to noise. Too
many accesses while processing the attacker’s request negatively
impact the measurements such that the attacker will always observe
a cache miss. In our experiments, we were not able to mount the
attack using a socket-based interface. Hence, attacking other user-
space applications that rely on a more complex interface, e.g., using
D-Bus, is currently not practical. However, future work may refine
our techniques to also mount attacks in more noisy scenarios. For
our evaluation, we targeted a shared-memory-based API for high-
speed transmission without system calls [26] provided by the victim
application. We were able to recover 13 bits with an average success
rate of 88.9 % in 1.94 s (σ = 1.76 s,n = 1000).

http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://kb.vmware.com/s/article/2080735
https://github.com/felixwilhelm/mario_baslr
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
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