
Microarchitectural side channels: from hardware to software

Clémentine Maurice, CNRS, CRIStAL
March 13, 2025—ARCHI 2025

2

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification

attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

3

Attacker model

Hardware-based attacks
a.k.a physical attacks

Software-based attacks
a.k.a micro-architectural attacks

vs

Physical access to hardware
→ embedded devices

Co-located or remote attacker
→ complex systems

4

Micro-architectural side-channel attacks: Two faces of the same coin

Hardware Implementation

&

5

Research questions

1. Which hardware component is vulnerable?

2. Which software implementation is vulnerable?

6

Outline

• Part 1 Small example: Flush+Reload on GnuPG v 1.4.13
• Part 2 Which hardware component is vulnerable?
• Part 3 Which software implementation is vulnerable?

Part 1 Small example:
Flush+Reload on GnuPG v 1.4.13

7

GnuPG 1.4.13 RSA square-and-multiply exponentiation

GnuPG version 1.4.13 (2013)

Algorithm 1: GnuPG 1.4.13 Square-and-multiply exponentiation
Input: base c, exponent d, modulus n
Output: cd mod n
X← 1
for i← bitlen(d) downto 0 do

X← square(X)
X← X mod n
if di = 1 then

X←multiply(X,c)
X← X mod n

end
end
return X

8

Attacking GnuPG 1.4.13 RSA exponentiation

• monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

8

Attacking GnuPG 1.4.13 RSA exponentiation

• monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

Part 2 Which hardware component
is vulnerable?

Cache side-channel attacks

10

Set-associative caches

Tag Index OffsetAddress

Cache

10

Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

10

Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address
Several ways per set

10

Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address
Several ways per set
Cache line loaded in a specific way depending on the replacement policy

11

Cache attacks

• cache attacks→ exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

11

Cache attacks

• cache attacks→ exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

11

Cache attacks

• cache attacks→ exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

11

Cache attacks

• cache attacks→ exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

12

Timing attacks

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only

• here, corner cases: hits and misses

12

Timing attacks

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only
• here, corner cases: hits and misses

13

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases

13

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!

4. find a threshold to distinguish the two cases

13

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!
4. find a threshold to distinguish the two cases

14

Building the histogram: cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta

15

Building the histogram: cache misses

Loop:

1. flush variable (clflush instruction)
2. measure time
3. access variable (always cache miss)
4. measure time
5. update histogram with delta

16

Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

17

Finding the threshold

• as high as possible→ most cache hits are below
• no cache miss below

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

18

How to measure time accurately? (1/3)

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

18

How to measure time accurately? (1/3)

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

19

How to measure time accurately? (2/3)

• do you measure what you think you measure?

• out-of-order execution→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

19

How to measure time accurately? (2/3)

• do you measure what you think you measure?
• out-of-order execution

→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

19

How to measure time accurately? (2/3)

• do you measure what you think you measure?
• out-of-order execution→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

20

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

20

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

20

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

20

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

21

Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM
• used for both covert channels and side-channel attacks
• many variants: Flush+Flush, Evict+Reload, Prime+Scope, Prime+Abort...

D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.

22

Spatial and temporal resolution

• spatial resolution: what can I monitor? A page? A set? A line?
→ a spatial resolution of a 4KB page means that you cannot distinguish two

memory accesses within a 4KB page
• temporal resolution: how often can I perform a monitoring operation?
→ a temporal resolution of 1ms means that you cannot monitor more than one

event every 1ms: if an event happens every 1µs, you can only capture 0.1% of
events

Both influence the type of attacks that you can perform: an attacker that can only
monitor a 4KB page every minute obtains less information than an attacker that
can monitor a cache line every 100ns.

22

Spatial and temporal resolution

• spatial resolution: what can I monitor? A page? A set? A line?
→ a spatial resolution of a 4KB page means that you cannot distinguish two

memory accesses within a 4KB page
• temporal resolution: how often can I perform a monitoring operation?
→ a temporal resolution of 1ms means that you cannot monitor more than one

event every 1ms: if an event happens every 1µs, you can only capture 0.1% of
events

Both influence the type of attacks that you can perform: an attacker that can only
monitor a 4KB page every minute obtains less information than an attacker that
can monitor a cache line every 100ns.

23

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

23

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

23

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

23

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

23

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data

24

Flush+Reload: Applications

• cross-VM (memory-deduplication enabled) side channel attacks on
cryptographic primitives:

• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• attacks against pseudorandom number generators
• attacks against RSA key generation
• revival of Bleichenbacher attacks on TLS

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
B. Gülmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE. 2015.
S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG”. In: S&P. 2020.
A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019).
E. Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019.

25

Flush+Reload: Pros and cons

Pros

high spatial resolution: 1 line
high temporal resolution

Cons

restrictive
1. needs clflush instruction (not

available e.g., on ARM-v7)
2. needs shared memory

What if there is no shared memory?

E.g., there is no memory deduplication and no accessible
shared library

What if there is no shared memory?

E.g., there is no memory deduplication and no accessible
shared library

27

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

27

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

27

Inclusive property

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

27

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

27

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

27

Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

29

Prime+Probe: Applications

• cross-VM side channel attacks on crypto implementations:
• El Gamal (sliding window): full key recovery in 12 min.

• tracking user behavior in the browser, in JavaScript
• covert channels between virtual machines in the cloud

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

30

Prime+Probe: Pros and cons

Pros

less restrictive
1. no need for clflush
2. no need for shared memory

Cons

• lower spatial resolution: 1 set
• lower temporal resolution:
probe n addresses to evict 1
line

• prone to noise

31

Prime+Probe in practice

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set and same slice (issues #1 and #2)
2. an eviction strategy: the order in which we access the eviction set (issue #3)

P. Vila, B. Köpf, and J. F. Morales. “Theory and Practice of Finding Eviction Sets”. In: S&P. 2019.
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015.
P. Vila et al. “CacheQuery: learning replacement policies from hardware caches”. In: PLDI. 2020.

31

Prime+Probe in practice

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set and same slice (issues #1 and #2)
2. an eviction strategy: the order in which we access the eviction set (issue #3)

P. Vila, B. Köpf, and J. F. Morales. “Theory and Practice of Finding Eviction Sets”. In: S&P. 2019.
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015.
P. Vila et al. “CacheQuery: learning replacement policies from hardware caches”. In: PLDI. 2020.

Port contention side-channel attacks

33

Background: Hyper-threading

Simultaneous computation technology of Intel.
• physical cores are shared between logical cores
• abstraction at the OS level

→ hardware resources are shared between logical
cores

33

Background: Hyper-threading

Simultaneous computation technology of Intel.
• physical cores are shared between logical cores
• abstraction at the OS level
→ hardware resources are shared between logical

cores

34

Background: Execution pipeline

• instructions are decomposed in
uops to optimize Out-of-Order
execution

• uops are dispatched to specialized
execution units through CPU ports

• deterministic decomposition of
instructions into uops

Execution Engine

uOps uOps uOps uOps uOps uOps

Thread
0

Thread
1

Decode

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

Scheduler

inst.
fetch

uOps

Memory Subsystem

INT ALU

INT DIV

VEC ALU

AES

VEC STR

FP DIV

BRANCH

VEC MUL

INT ALU

INT MUL

VEC ALU

BIT SCAN

VEC MUL

INT ALU

VEC SHU

VEC ALU

LEA

INT ALU

BRANCH

AGU

LOAD

AGU

LOAD

STORE AGU

uOps

inst.
fetch

35

Port contention

No contention

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A A
Execution
engine

All attacker instructions are
executed in a row
→ fast execution time

Contention

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A V A
Execution
engine

Victim instructions delay the
attacker instructions
→ slow execution time

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.

35

Port contention

No contention

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A A
Execution
engine

All attacker instructions are
executed in a row
→ fast execution time

Contention

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A V A
Execution
engine

Victim instructions delay the
attacker instructions
→ slow execution time

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.

36

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage

36

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 1

Secret is 0!

36

Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Secret is 1!

37

Port contention: applications

• end-to-end attack on a TLS server (OpenSSL 1.1.0h): recovers a P-384 ECDSA
private key
→ secret dependent on double-and-add operations of ec_wNAF_mul point

multiplication

• SMoTherSpectre, a speculative code-reuse attack

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
A. Bhattacharyya et al. “SMoTherSpectre: Exploiting Speculative Execution through Port Contention”. In: CCS. 2019.

38

Port contention: Pros and cons

Pros

• very high spatial resolution: 1
instruction!

• high temporal resolution
• more resistant to noise if
processes do not share a
physical core

• no offline phase of creating
an eviction set

Cons

• restrictive: requires SMT
enabled + co-location on the
same physical core

• mapping from instructions to
port can change from one
generation to another

39

Conclusion: We are more or less doomed on the hardware side

Translation look�aside buffer

USENIX Sec'18

CPU Ports

S&P'19

L1d, L1i, L2 cache

BSDCon'05, CT-RSA'06,

ASIACCS'20

Branch Prediction

CT-RSA'07

GPU

S&P'18

Ring Interconnect

USENIX Sec'21, DIMVA'21

LLC attacks

USENIX'14, S&P'15

DRAM

USENIX Sec'16

State of the art today: each component shared by two processes
is a potential micro-architectural side-channel vector

Part 3 Which software
implementation is vulnerable?

40

Side-channel vulnerabilities and constant-time programming

Problem?

Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?

40

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?

40

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?

… right?

40

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

41

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.

42

So many detection frameworks, yet so many attacks... Why?

Year

To
ol

s
re

le
as

ed

0

2

4

6

8

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Static Dynamic

Many tools published from 2017, 67% of tools are open source (23 over 34)

Why are so many attacks still manually found?

42

So many detection frameworks, yet so many attacks... Why?

Year

To
ol

s
re

le
as

ed

0

2

4

6

8

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Static Dynamic

Many tools published from 2017, 67% of tools are open source (23 over 34)

Why are so many attacks still manually found?

43

Related Work

• do developers use CT tools? [S&P 2022]
→ most developers do not use them, or
do not know about them

• how to improve the tool usability?
[USENIX Sec 2024]
→ most developers find them really
hard to use

J. Jancar et al. “”They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks”. In: S&P. 2022.
M. Fourné et al. ““These results must be false”: A usability evaluation of constant-time analysis tools”. In: USENIX Security Symposium. 2024.

44

Would the tools actually work to automatically
find recent vulnerabilities?

45

Comparing recent vulnerabilities (2017-2022) with past vulnerabilities

1996 2005 2007 20142011 2017 2019 2021
square-and-multiply

RSA decryption

sliding window
RSA decryption

T-tables
AES encryption

binary GCD
RSA decryption

Montgomery ladder
(timing)

ECDSA signing

Montgomery ladder
(cache)

ECDSA signing

wNAF mult.
ECDSA signing

bignum arithmetic Hash-to-element
function

binary GCD
RSA keygen

ECDSA signing
SM2 signing

wNAF mult.
SM2 signing

sliding window
RSA keygen

sliding window
SRP protocol

T-tables
PRG

Gaussian sampling

wNAF mult.
key handling
binary GCD
key handling

46

The SAME vulnerabilities keep resurfacing. Why? (1/2)

New contexts:

• Key generation
• Key parsing and handling
• Random number generation

(Mostly OpenSSL) Vulnerable code stays in the library
and the CT flag is not correctly set

A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019)
C. P. García et al. “Certified Side Channels”. In: USENIX Security Symposium. 2020
S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG”. In: S&P. 2020

47

The SAME vulnerabilities keep resurfacing. Why? (2/2)

New libraries

• MbedTLS sliding window RSA implementation
• Bleichenbacher-like attacks in MbedTLS, s2n, or NSS

Vulnerability is found in OpenSSL but
patches are not propagated to other libraries

M. Schwarz et al. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA. 2017
E. Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019

48

Most vulnerabilities stem from code
already known to be vulnerable

49

Side-channel vulnerability detection tools (1/2)

50

Side-channel vulnerability detection tools (2/2)

Frameworks

Dynamic
Single trace 4 tools

Trace comparison 11 tools

Static
Symbolic execution 7 tools

Type system 2 tools

Abstract int. 5 tools

Logical reduction 5 tools

51

Side-note: Why you want to detect vulnerabilities at the binary level (1/4)

• the compiler is not your friend, it just wants to make stuff fast
• recent example: Kyber implementation, CVE-2024-37880, June 03, 2024

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

52

Side-note: Why you want to detect vulnerabilities at the binary level (2/4)

Expanding a string into an array of integer, the wrong way

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

53

Side-note: Why you want to detect vulnerabilities at the binary level (3/4)

Expanding a string into an array of integer, the right way

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

54

Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code?

Yes, it✨ optimizes it✨

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

54

Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code?

Yes, it✨ optimizes it✨

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

54

Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code? Yes, it✨ optimizes it✨

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

55

Benchmark: cryptographic operations

Unified benchmark representative of cryptographic operations:

• 5 tools: Binsec/Rel, Abacus, ctgrind, dudect, Microwalk-CI
• 25 benchmarks from 3 libraries (OpenSSL, MbedTLS, BearSSL)
• cryptographic primitives: symmetric, AEAD schemes, asymmetric

L. Daniel, S. Bardin, and T. Rezk. “Binsec/Rel: Efficient Relational Symbolic Execution for Constant-Time at Binary-Level”. In: S&P. 2020.
Q. Bao et al. “Abacus: Precise Side-Channel Analysis”. In: ICSE. 2021.
https://github.com/agl/ctgrind
O. Reparaz, J. Balasch, and I. Verbauwhede. “Dude, is my code constant time?” In: DATE. 2017.
J. Wichelmann et al. “Microwalk-CI: Practical Side-Channel Analysis for JavaScript Applications”. In: CCS. 2022.

56

Benchmark results: cryptographic operations (selection)

Binsec/Rel2 Abacus ctgrind Microwalk
#V #V #V #V

AES-CBC-bearssl (T) 36 36 36 36
AES-CBC-bearssl (BS) 0 0 0 0
AES-GCM-openssl (EVP) 0 0 70 8
RSA-bearssl (OAEP) 2 () 87 0
RSA-openssl (PKCS) 1 () 0 321 46
RSA-openssl (OAEP) 1 () 546 61

• timeout limit (): 1 hour
• tools generally agree on symmetric crypto, but disagree on asymmetric crypto
• takeaway: support for vector instructions is essential

57

Benchmark: recent vulnerabilities

Replication of published vulnerabilities:

• 7 vulnerable functions from 3 publications
• both the function itself and its context are targeted
• total: 11 additional benchmarks

58

Benchmark results: recent vulnerabilities (selection)

Binsec/Rel2 Abacus ctgrind Microwalk
V T(s) V T(s) V T(s) V T(s)

RSA valid. (MbedTLS) 490.01 ✓ 0.40 ✓ 278.94
GCD 37.74 0.21 ✓ 22.96
modular inversion 242.10 ✓ 0.24 ✓ 141.82
RSA keygen (OpenSSL) 0.17 8.66 6.36 ✓ 842.02
GCD ✓ ✓ 0.19 ✓ 3.61
modular inversion ✓ 0.21 ✓ 5.96

• some vulnerabilities are missed because of implicit flows
• most tools do not support tainting internal secrets

More details in our CCS 2023 paper!

Perspectives & Conclusion

60

tl;dr

Side-channel free software, are we there yet?

Nope!

Speculative
execution

Dynamic
frequency
scaling

Data memory-dependant
prefetcher

Future optimisations?

Constant time

62

Beyond constant time

Code that is ”constant-time” (and considered
secure until recently) can be vulnerable too!

63

Conclusions

• first paper by Kocher in 1996: almost 30 years of research in this area

• domain still in expansion: increasing number of papers published since 2015
• micro-architectural attacks require a:

• low-level understanding of hardware→micro-architecture, reverse-engineering
• low-level understanding of software→ program analysis, compilation,
cryptography...

→ work across all abstraction layers!

63

Conclusions

• first paper by Kocher in 1996: almost 30 years of research in this area
• domain still in expansion: increasing number of papers published since 2015

• micro-architectural attacks require a:
• low-level understanding of hardware→micro-architecture, reverse-engineering
• low-level understanding of software→ program analysis, compilation,
cryptography...

→ work across all abstraction layers!

63

Conclusions

• first paper by Kocher in 1996: almost 30 years of research in this area
• domain still in expansion: increasing number of papers published since 2015
• micro-architectural attacks require a:

• low-level understanding of hardware→micro-architecture, reverse-engineering
• low-level understanding of software→ program analysis, compilation,
cryptography...

→ work across all abstraction layers!

Thank you!

Contact

clementine.maurice@inria.fr

Microarchitectural side channels: from hardware to software

Clémentine Maurice, CNRS, CRIStAL
March 13, 2025—ARCHI 2025

	Part 1 Small example: Flush+Reload on GnuPG v 1.4.13
	Part 2 Which hardware component is vulnerable?
	Part 3 Which software implementation is vulnerable?
	Perspectives & Conclusion

