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Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations
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Attacker model

Hardware-based attacks Software-based attacks
a.k.a physical attacks a.k.a micro-architectural attacks

Physical access to hardware Co-located or remote attacker
— embedded devices — complex systems
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Micro-architectural side-channel attacks: Two faces of the same coin

Hardware

OLiio

Implementation R

Algorithm 1: Square-and-multiply exponentiation

Input: base b, exponent e, modulus n
Output: b® mod n
X<+1
for i « bitlen(e) downto 0 do

X < multiply(X, X)

if e, = 1then

| X multiply(X, b)

end
end
return X




Research questions

1. Which hardware component is vulnerable?

2. Which software implementation is vulnerable?



- Part1 Small example: Flush+Reload on GnuPG v 1413
- Part2 Which hardware component is vulnerable?
- Part 3 Which software implementation is vulnerable?



Part 1 Small example:
Flush+Reload on GnuPG v 1.4.13



GnuPG 1.4.13 RSA square-and-multiply exponentiation

GnuPG version 1413 (2013)

Algorithm 1: GnuPG 1413 Square-and-multiply exponentiation
Input: base ¢, exponent d, modulus n
Output: ¢? mod n
X+1
for i < bitlen(d) downto 0 do
X+ square(X)
X<+ Xmodn
if d;=1then
X« multiply(X,c)
X<+ Xmodn
end
end
return X




Attacking GnuPG 1.4.13 RSA exponentiation

- monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent
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Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.



Attacking GnuPG 1.4.13 RSA exponentiation

- monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent
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Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.



Part 2 Which hardware component
is vulnerable?



Cache side-channel attacks
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Set-associative caches

Address Tag Index ‘ Offset ‘

way 0 way 3

Cache set

|

Cache line ——————+

Cache

Data loaded in a specific set depending on its address
Several ways per set
Cache line loaded in a specific way depending on the replacement policy
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Cache attacks

- cache attacks — exploit timing differences of memory accesses

- attacker monitors which lines are accessed, not the content

- covert channel: two processes communicating with each other
- not allowed to do so, e.g., across VMs

- side-channel attack: one malicious process spies on benign processes
- e.g, steals crypto keys, spies on keystrokes

1



Timing attacks

How every timing attack works:

- learn timing of different corner cases

- later, we recognize these corner cases by timing only



Timing attacks

How every timing attack works:

- learn timing of different corner cases
- later, we recognize these corner cases by timing only

- here, corner cases: hits and misses



First step: building the histogram

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)
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First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!

4. find a threshold to distinguish the two cases
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Building the histogram: cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time

4. update histogram with delta

14



Building the histogram: cache misses

Loop:

. flush variable (c1flush instruction)

. measure time

1
2
3. access variable (always cache miss)
4. measure time

5

. update histogram with delta

15






Finding the threshold

- as high as possible — most cache hits are below
- no cache miss below
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How to measure time accurately? (1/3)

- very short timings

- rdtsc instruction: cycle-accurate timestamps
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How to measure time accurately? (1/3)

- very short timings
- rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc

[...]
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How to measure time accurately? (2/3)

- do you measure what you think you measure?
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+ out-of-order execution
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How to measure time accurately? (2/3)

- do you measure what you think you measure?

- out-of-order execution — what is really executed

rdtsc rdtsc rdtsc
function() [...] rdtsc
[...] rdtsc function()

rdtsc function() [...]

19



How to measure time accurately? (3/3)

- use pseudo-serializing instruction rdtscp (recent CPUs)
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How to measure time accurately? (3/3)

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid

- and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.
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Cache attacks techniques

- two (main) techniques

1. Flush+Reload (Gullasch et al., Osvik et al, Yarom et al.)
2. Prime+Probe (Percival, Osvik et al, Liu et al.)

- exploitable on x86 and ARM
- used for both covert channels and side-channel attacks
- many variants: Flush+Flush, Evict+Reload, Prime+Scope, Prime+Abort...

D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games - Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P'11. 2011.

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES". In: CT-RSA 2006. 2006.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

21
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P15. 2015.



Spatial and temporal resolution

- spatial resolution: what can | monitor? A page? A set? A line?

— a spatial resolution of a 4KB page means that you cannot distinguish two
memory accesses within a 4KB page

- temporal resolution: how often can | perform a monitoring operation?

— atemporal resolution of Tms means that you cannot monitor more than one
event every Tms: if an event happens every 1us, you can only capture 0.1% of
events
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Spatial and temporal resolution

- spatial resolution: what can | monitor? A page? A set? A line?
— a spatial resolution of a 4KB page means that you cannot distinguish two
memory accesses within a 4KB page
- temporal resolution: how often can | perform a monitoring operation?

— atemporal resolution of Tms means that you cannot monitor more than one
event every Tms: if an event happens every 1us, you can only capture 0.1% of
events

Both influence the type of attacks that you can perform: an attacker that can only
monitor a 4KB page every minute obtains less information than an attacker that
can monitor a cache line every 100ns.

22



Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Cache attack: Flush+Reload

flushes
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Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line
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Cache attack: Flush+Reload

loads data

—

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data
23



Cache attack: Flush+Reload

I "e10ads dat
Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

Step 4: Attacker reloads the data 2



Flush+Reload: Applications

- cross-VM (memory-deduplication enabled) side channel attacks on
cryptographic primitives:
- RSA: 96.7% of secret key bits in a single signature
- AES: full key recovery in 30000 dec. (a few seconds)

- attacks against pseudorandom number generators
- attacks against RSA key generation

- revival of Bleichenbacher attacks on TLS

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
B. Gulmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE. 2015.

S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG". In: S&P. 2020.

A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019).

24
E. Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019.



Flush+Reload: Pros and cons

Pros

high spatial resolution: 1 line
high temporal resolution

Cons

restrictive

1. needs clflush instruction (not
available e.g., on ARM-v7)

2. needs shared memory

25



What if there is no shared memory?



What if there is no shared memory?

E.g., there is no memory deduplication and no accessible
shared library



Inclusive property

core0 corel

- inclusive LLC: superset of L1 and L2
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Inclusive property

1
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core0

corel

- inclusive LLC: superset of L1 and L2

- data evicted from the LLC is also
evicted from U and L2
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Inclusive property

1

L2

LLC

core0

corel

‘eviction

- inclusive LLC: superset of L1 and L2
- data evicted from the LLC is also

evicted from U and L2

- a core can evict lines in the private L1

of another core

27



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
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Prime+Probe: Applications

- cross-VM side channel attacks on crypto implementations:
- El Gamal (sliding window): full key recovery in 12 min.

- tracking user behavior in the browser, in JavaScript

- covert channels between virtual machines in the cloud

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P'15. 2015.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015. 29
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS'77. 2017.



Prime+Probe: Pros and cons

Pros Cons
less restrictive - lower spatial resolution: 1 set
1. no need for clflush - lower temporal resolution:
2. no need for shared memory probe n addresses to evict 1
line

- prone to noise

30



Prime+Probe in practice

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?

3. and in which order do we access them?

P. Vila, B. Kopf, and J. F. Morales. “Theory and Practice of Finding Eviction Sets”. In: S&P. 2019.
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID'15. 2015.

31

P.Vila et al. “CacheQuery: learning replacement policies from hardware caches”. In: PLDI. 2020.



Prime+Probe in practice

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?

3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set and same slice (issues #1 and #2)

2. an eviction strategy: the order in which we access the eviction set (issue #3)

P.Vila, B. Kopf, and J. F. Morales. “Theory and Practice of Finding Eviction Sets”. In: S&P. 2019.
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID'15. 2015.

31

P. Vila et al. “CacheQuery: learning replacement policies from hardware caches”. In: PLDI. 2020.



Port contention side-channel attacks



Background: Hyper-threading

Simultaneous computation technology of Intel.

- physical cores are shared between logical cores

- abstraction at the OS level
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Background: Hyper-threading

Simultaneous computation technology of Intel.

- physical cores are shared between logical cores

- abstraction at the OS level

— hardware resources are shared between logical
cores

33



Background: Execution pipeline

- instructions are decomposed in
uops to optimize Out-of-Order
execution L Scheduler J
- uops are dispatched to specialized |
execution units through CPU ports
- deterministic decomposition of EE camerre | | | |
instructions into uops emory Subsysto

34



Port contention

No contention

Attacker
instr Port 1
Execution
Schedulerﬂ . ) engine

Victim

All attacker instructions are
executed in a row
— fast execution time

35
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



Port contention

No contention Contention

Attacker Attacker
instr Port 1 instr Port 1
! | Execution | | execution

vt | vitim e
instr
All attacker instructions are Victim instructions delay the
executed in a row attacker instructions
— fast execution time — slow execution time

35
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



Port contention side-channel attack

Victim

secret == secret == .

l l Monitors port usage o N N

”~ S\

(&
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmo
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmO
Contention on Port 1 Contention on Port 5
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Port contention side-channel attack

Victim
; T T
Contention on Port 1 S~
POPCNT %r8,%r8 o
POPCNT %r8,%r8
. -
POPCNT %r8,%r8 Secret is 0!

POPCNT %r8,%r8

36



Port contention side-channel attack

Victim

secret == .
l

a b 4 ) 4
Contention on Port 5 C 2al
VPBROADCASTD %xmm@, %ymmoO
VPBROADCASTD %xmm@, %ymmoO
Secret is 1!

VPBROADCASTD %xmm@, %ymmo
VPBROADCASTD %xmm@, %ymmo

36



Port contention: applications

- end-to-end attack on a TLS server (OpenSSL 11.0h): recovers a P-384 ECDSA
private key
— secret dependent on double-and-add operations of ec_wNAF_mul point
multiplication

- SMoTherSpectre, a speculative code-reuse attack

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
A. Bhattacharyya et al. “SMoTherSpectre: Exploiting Speculative Execution through Port Contention”. In: CCS. 2019.
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Port contention: Pros and cons

Pros Cons
- very high spatial resolution: 1 - restrictive: requires SMT
instruction! enabled + co-location on the
- high temporal resolution same physical core
. more resistant to noise if - mapping from instructions to
processes do not share a port can change from one
physical core generation to another

- no offline phase of creating
an eviction set

38



Conclusion: We are more or less doomed on the hardware side

CPU Ports
Translation look-aside buffer SS5P'19 $

USENIX Sec'18 <N LLC attacks y DRAM
‘ USENIX'14, S&P'15 USENIX Sec'16

GPU
Lg® | )
S ‘ V S&P'18
Lld, L1i, L2 cache Branch Prediction
BSDCon'05, CT-RSA'06,  CT-RSA'07 Ring Interconnect
ASIACCS'20 USENIX Sec'21, DIMVA'21

State of the art today: each component shared by two processes
is a potential micro-architectural side-channel vector 39



Part 3 Which software
implementation is vulnerable?




Side-channel vulnerabilities and constant-time programming

@ Problem?

Side-channel vulnerability

Any branch or memory access
that depends on a secret
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Side-channel vulnerabilities and constant-time programming

@ Problem?

Side-channel vulnerability

Any branch or memory access —
that depends on a secret

That's easy, right?

Q Solution!

Constant-time programming

No branch or memory access
depends on a secret!
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Side-channel vulnerabilities and constant-time programming

@ Problem? Q Solution!
Side-channel vulnerability Constant-time programming
Any branch or memory access — No branch or memory access
that depends on a secret depends on a secret!

That's easy, right?... right?

40



So many attacks.
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So many detection frameworks, yet so many attacks... Why?

Static [l Dynamic

- millnn.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Tools released

Year

Many tools published from 2017, 67% of tools are open source (23 over 34)
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So many detection frameworks, yet so many attacks... Why?

Static [l Dynamic

- millnn.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Tools released

Year

Many tools published from 2017, 67% of tools are open source (23 over 34)

Why are so many attacks still manually found?
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Related Work

- do developers use CT tools? [S&P 2022]

— most developers do not use them, or o8 gl e
do not know about them L L3

o ofo S 21 4.5% Don't use tools (2%)
how to improve the tool usability? T e
[USEN |X Sec 2024] i 3?[,_8;/0_H_aven'ttr\ed to use tools (14%)
— most developers find them really Ll

25% Don't know about tools (11%)
hard to use
J.Jancar et al. “"They're not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks”. In: S&P. 2022. 43

M. Fourné et al. ““These results must be false”: A usability evaluation of constant-time analysis tools”. In: USENIX Security Symposium. 2024.



Would the tools actually work to automatically
find recent vulnerabilities?

"



Comparing recent vulnerabilities (2017-2022) with past vulnerabilities

sliding window Gaussian sampling
RSA decryption . . i
Montgomery ladder bignum arithmetic 1yach-to-element
T-tables (timing) function
AES encryption ECDSA signing
| | | | | ' | | | | | | I | | »l
— A A R A B | I
1996 2005 2007 20M 2q14 2017 2q19 2021
square-and-multiply binary GCD Sllsdésg:lgtlgéio?w
RSA decryption RSA decryption P
sliding windgqw
Montgomery ladder RSA keygen
(cache) binary GCD T-tables
ECDSA signing RSA keygen PRG
ECDSA signi
wNAF mult. EMSZ s?glﬁ?r:gg WNAF mult.
ECDSA signing key handling
WNAF mult. binary GCD
SM2 signing key handling
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The SAME vulnerabilities keep resurfacing. Why? (1/2)

New contexts:

- Key generation
- Key parsing and handling

- Random number generation

(Mostly OpenSSL) Vulnerable code stays in the library
and the CT flag is not correctly set

A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019)
C. P. Garcia et al. “Certified Side Channels”. In: USENIX Security Symposium. 2020
S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG". In: S&P. 2020
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The SAME vulnerabilities keep resurfacing. Why? (2/2)

New libraries

- MbedTLS sliding window RSA implementation
- Bleichenbacher-like attacks in MbedTLS, s2n, or NSS

Vulnerability is found in OpenSSL but
patches are not propagated to other libraries

M. Schwarz et al. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA. 2017
E. Ronen et al. “The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019
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Most vulnerabilities stem from code
already known to be vulnerable

48



Side-channel vulnerability detection tools (1/2)

Ref  Year Tool Type  Methods Scal. Policy Sound Input L W E B Avaiable
[85] 2010 ct-grind Dynamic Tainting ® CI © Binary v
[15] 2013 Almeidaetal.  Static  Deductive verification O CI @ Csource

[55] 2013 CacheAudit Static  Abstract interpretation o  co Binary v v
[22] 2014 ViRuarCerr  Static  Type system O Cr @ Csource v v
[70] 2015 Cache Templates Dynamic ~Statistical tests o co Binary v
[13] 2016 ct-verif Static  Logical verification © CT e LLWM v
[107] 2016 FlowTracker Static  Type system © CI e LM v v
[56] 2017 CacheAudit2 Static  Abstract interpretation O CI @ Binary v

[28] 2017 Blazy etal Static  Abstract interpretation p  CT @ Csource

[17] 2017 Blazer Static  Decomposition © CR @ Jaa

[48] 2017 Themis Static  Logical verification © CR @ Jama Y

[127] 2017 CacheD Dynamic  DSE ¢ €O O Bimay / v

[136] 2017 STACCO Dynamic ~Trace diff © R Binary v
[106] 2017 dudect Dynamic ~Statistical tests © ce Binary v
[117] 2018 CANAL Static  SE o co LLYM v v
[47] 2018 CacheFix Static  SE © co € 7| v
[34] 2018 CoCo-Channmel  Static  SE, tainting ® CR © Java v

[19] 2018 SideTrail Static  Logical verification O CR e LM VAR v
[114] 2018 Shin ctal. Dynamic ~ Statistical tests p  CO O Binary v

[132] 2018 DATA Dynamic  Statistical tests © CI O Binary VAR
[133] 2018 MicroWalk Dynamic  MIA @ CI O Binary v v
[110] 2019 STAnalyzer Static  Abstract interpretation e CI e ¢ v v
[95] 2019 DirFuzz Dynamic  Fuzzing © R O Jaa v v
[126] 2019 CacheS Static Abstract interpretation, SE @ CT o] Binary v v

[35] 2019 CaSym Static  SE © CO e LM v oV

[54] 2020 Pitchfork Static  SE, tainting e CI © LM 7| v
[66] 2020 ABSynthe Dynamic Genetic algorithm, RNN. ~ ©  CR O Csource v
[72] 2020 ct-fuzz Dynamic  Fuzzing © CT O Binary J/ J/ v
[51] 2020 Binsc/Rew Static  SE e cT Binary v
[20] 2021 Abacus Dynamic DSE e cCr Binary v v
[74] 2022 CaType Dynamic  Type system © Co Binary v

[134] 2022 MicroWalk-CI  Dynamic MIA e cT Binary,JS v v 49
[140] 2022 ENCIDER Static  SE e cCT LLYM Y v
[141] 2023 CacheQL Dynamic  MIA, NN e cr Binary g 7




Side-channel vulnerability detection tools (2/2)

—Abstract int. 5 tools

Frameworks ——

. ———Type system 2 tool
Static P y. _oo s
———Symbolic execution 7tools
Logical reduction  5tools
——Trace comparison 11 tools
L Dynamic —

Single trace 4 tools
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Side-note: Why you want to detect vulnerabilities at the binary level (1/4)

- the compiler is not your friend, it just wants to make stuff fast
- recent example: Kyber implementation, CVE-2024-37880, June 03, 2024
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Side-note: Why you want to detect vulnerabilities at the binary level (2/4)

Expanding a string into an array of integer, the wrong way

void (int16_t r[256]1, uint8_t *msg){
for(i=0;i<16;i++) { // outer loop: every byte of msg
for(j=0;3j<8;j++) { // inner loop: every bit in byte

if ((msg[i] >> j) & 0x1) // branch on j-th msg bit
r[8*i+j] = CONSTANT;

else
r[8xi+j] = 0;
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Side-note: Why you want to detect vulnerabilities at the binary level (3/4)

Expanding a string into an array of integer, the right way

void (int16_t r[256], uint8_t *msg){
for(i=0;i<16;i++) {
for(j=0;3<8;j++) {
mask = -(int16_t)((msgli] >> j) & Ox1);
r[8*i+j] = mask & CONSTANT; // no branch
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Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code?

// x86 assembly

xor eax, eax
.outer:

xor ecx, ecx
.inner:

movzx r8d, byte ptr [rsi + rax]

xor edx, edx

bt r8d, ecx // LSB test on (m[i] >> j)

jae .skip // unsafe branch

mov edx, 1665 // load of CONSTANT (may be skipped)
.skip:

mov word ptr [rdi + 2*rcx], dx

inc rex

cmp rex, 8

jne .inner // safe branch: inner loop

inc rax

add rdi, 16

cmp rax, 32

jne .outer // safe branch: outer loop

ret
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Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code?

// x86 assembly

xor eax, eax
.outer:

xor ecx, ecx
.inner:

movzx r8d, byte ptr [rsi + rax]

xor edx, edx

bt r8d, ecx // LSB test on (m[i] >> j)

jae .skip // unsafe branch

mov edx, 1665 // load of CONSTANT (may be skipped)
.skip:

mov word ptr [rdi + 2*rcx], dx

inc rex

cmp rex, 8

jne .inner // safe branch: inner loop

inc rax

add rdi, 16

cmp rax, 32

jne .outer // safe branch: outer loop

ret

.outer:

.inner:

.skip:

movzx
bt
Jjae
mov

ret

// x86 assembly

r8d, byte ptr [rsi + rax]
edx, edx

r8d, ecx

.skip // still here :(
edx, 1665
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Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code? Yes, it <+ optimizes it <

// x86 assembly

xor eax, eax
.outer:
xor ecx, ecx
.inner:
movzx r8d, byte ptr [rsi + rax]
xor edx, edx
bt r8d, ecx // LSB test on (m[i] >> j)
jae .skip // unsafe branch
mov edx, 1665 // load of CONSTANT (may be skipped)
.skip:
mov word ptr [rdi + 2*rcx], dx
inc rex
cmp rex, 8
jne .inner // safe branch: inner loop
inc rax
add rdi, 16
cmp rax, 32
jne .outer // safe branch: outer loop
ret

.outer:

.inner:

.skip:

movzx
bt
Jjae
mov

ret

// x86 assembly

r8d, byte ptr [rsi + rax]
edx, edx

r8d, ecx

.skip // still here :(
edx, 1665
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Benchmark: cryptographic operations

Unified benchmark representative of cryptographic operations:

- 5 tools: Binsec/Rel, Abacus, ctgrind, dudect, Microwalk-Cl
- 25 benchmarks from 3 libraries (OpenSSL, MbedTLS, BearSSL)

- cryptographic primitives: symmetric, AEAD schemes, asymmetric

L. Daniel, S. Bardin, and T. Rezk. “Binsec/Rel: Efficient Relational Symbolic Execution for Constant-Time at Binary-Level”. In: S&P. 2020.

Q. Bao et al. “Abacus: Precise Side-Channel Analysis”. In: ICSE. 2021.

https://github.com/agl/ctgrind

0. Reparaz, J. Balasch, and I. Verbauwhede. “Dude, is my code constant time?” In: DATE. 2017. 55,

J. Wichelmann et al. “Microwalk-Cl: Practical Side-Channel Analysis for JavaScript Applications”. In: CCS. 2022.



Benchmark results: cryptographic operations (selection)

Binsec/Rel2 | Abacus | ctgrind | Microwalk

#v ®v HvV Hv

AES-CBC-bearssl (T) 36 36 36 36
AES-CBC-bearssl (BS) 0 0 0 0
AES-GCM-openssl (EVP) 0 0 70 8
RSA-bearssl (OAEP) 2 (X) " 87 0
RSA-openssl (PKCS) 1 (X) 0 321 46
RSA-openssl (OAEP) 1 (X) -} 546 61

- timeout limit (X): 1 hour
- tools generally agree on symmetric crypto, but disagree on asymmetric crypto

- takeaway: support for vector instructions is essential 56



Benchmark: recent vulnerabilities

Replication of published vulnerabilities:

- 7 vulnerable functions from 3 publications
- both the function itself and its context are targeted

- total: 11 additional benchmarks
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Benchmark results: recent vulnerabilities (selection)

Binsec/Rel2 Abacus ctgrind | Microwalk

V T(s) | V T(s)| Vv T(s)| V T(s)
RSA valid. (MbedTLS) 4 49001 | v 040 | v 27894
GCD ™4 37.74 021 | v 2296
modular inversion 4 24210 | v 024 | v 141.82
RSA keygen (OpenSSL) 017 | &  8.66 6.36 | v 842.02
GCD v 4 X| v 019|v 361
modular inversion 4 x| v 021V 5.96

- some vulnerabilities are missed because of implicit flows

- most tools do not support tainting internal secrets
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More details in our CCS 2023 paper!

A Systematic Evaluation of Automated Tools for Side-Channel
Vulnerabilities Detection in Cryptographic Libraries

Antoine Geimer
Univ. Lille, CNRS, Inria
Univ. Rennes, CNRS, IRISA
Lille, France

Lesly-Ann Daniel
KU Leuven, imec-DistriNet
Leuven, Belgium

Abstract

To protect cryptographic implementations from side-channel vul-
nerabilities, developers must adopt constant-time programming
practices. As these can be error-prone, many side-channel detection
tools have been proposed. Despite this, such vulnerabilities are still
manually found in cryptographic libraries. While a recent paper
by Jancar et al. shows that developers rarely perform side-channel
detection, it is unclear if existing detection tools could have found
these vulnerabilities in the first place.

To answer this question we surveyed the literature to build a
classification of 34 side-channel detection frameworks. The classifi-

Mathéo Vergnolle
Université Paris-Saclay, CEA, List
Gif-sur-Yvettes, France

Sébastien Bardin
Université Paris-Saclay, CEA, List
Gif-sur-Yvettes, France

Frédéric Recoules
Université Paris-Saclay, CEA, List
Gif-sur-Yvettes, France

Clémentine Maurice
Univ. Lille, CNRS, Inria
Lille, France

1 Introduction

Implementing cryptographic algorithms is an arduous task. Be-
yond functional correctness, the developers must also ensure that
their code does not leak potentially secret information through
side channels. Since Paul Kocher’s seminal work [82], the research
community has combed through software and hardware to find
vectors allowing for side-channel attacks, from execution time to
electromagnetic emissions. The unifying principle behind this class
of attacks is that they do not exploit the algorithm specification but
rather physical characteristics of its execution. Among the afore-
mentioned attack vectors, the processor microarchitecture is of



Perspectives & Conclusion




Side-channel free software, are we there yet?

Nope!
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Speculative
execution

Dynamic
frequency
scaling

Constant time

Data memory-dependant
prefetcher

Future optimisations?




Beyond constant time

Code that is "constant-time” (and considered
secure until recently) can be vulnerable too!

62



Conclusions

- first paper by Kocher in 1996: almost 30 years of research in this area
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Conclusions

- first paper by Kocher in 1996: almost 30 years of research in this area

- domain still in expansion: increasing number of papers published since 2015
- micro-architectural attacks require a:

- low-level understanding of hardware — micro-architecture, reverse-engineering
- low-level understanding of software — program analysis, compilation,
cryptography...

— work across all abstraction layers!
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Thank you!

Contact

¥ clementine.maurice@inria.fr
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