Microarchitectural side channels: from hardware to software

Clémentine Maurice, CNRS, CRIStAL
March 13, 2025—ARCHI 2025

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations

identification

D D cache hits D [] cache misses

|
0

Access time [CPU cycles]

107

104
10’ ‘

300 400

100 20

Number of accesses

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations

identification attack

D D cache hits D [] cache misses

|
0

Access time [CPU cycles]

107

104
10’ ‘

I1 1011 11010001001 1 1010001 1 100001 1 1

7 AL

Number of accesses

- retrieving secret keys, keystroke

|HIHHHHHHH| timings

200 400 - bypassing 0S security (ASLR))

100 20

Attacker model

Hardware-based attacks Software-based attacks
a.k.a physical attacks a.k.a micro-architectural attacks

Physical access to hardware Co-located or remote attacker
— embedded devices — complex systems

VS

Micro-architectural side-channel attacks: Two faces of the same coin

Hardware

OLiio

Implementation R

Algorithm 1: Square-and-multiply exponentiation

Input: base b, exponent e, modulus n
Output: b® mod n
X<+1
for i « bitlen(e) downto 0 do

X < multiply(X, X)

if e, = 1then

| X multiply(X, b)

end
end
return X

Research questions

1. Which hardware component is vulnerable?

2. Which software implementation is vulnerable?

- Part1 Small example: Flush+Reload on GnuPG v 1413
- Part2 Which hardware component is vulnerable?
- Part 3 Which software implementation is vulnerable?

Part 1 Small example:
Flush+Reload on GnuPG v 1.4.13

GnuPG 1.4.13 RSA square-and-multiply exponentiation

GnuPG version 1413 (2013)

Algorithm 1: GnuPG 1413 Square-and-multiply exponentiation
Input: base ¢, exponent d, modulus n
Output: ¢? mod n
X+1
for i < bitlen(d) downto 0 do
X+ square(X)
X<+ Xmodn
if d;=1then
X« multiply(X,c)
X<+ Xmodn
end
end
return X

Attacking GnuPG 1.4.13 RSA exponentiation

- monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent

500 =
uare =
Multiply =«
Module -
Missed siots W
400 |
. s .
i T L B O L TP AT LF S L P By %ethes 000,
g 300 | ©
75
£ B
2 200
o
Threshold TR
100 | 1
0 L 1 ' . . L L L I
3900 3910 3920 3930 3940 3950 3960 3970 3980 3990 4000

Time Slot Number

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

Attacking GnuPG 1.4.13 RSA exponentiation

- monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent

vy ' ' Speculativé Execution]
1]
o
S 70} e 1 ° ¢]
o . . ® . .
o]

g 60 . |
£
% 50 - -
& a0 L Square Reduce Multiply Reduce

1 | 1 | 1 | 1 | 1

3917 3918 3919 3920 3921 3922 3923 3924 3925
Time Slot Number

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

Part 2 Which hardware component
is vulnerable?

Cache side-channel attacks

Set-associative caches

Address ‘ Tag ‘ Index ‘ Oﬁéet‘

Cache

Set-associative caches

Address Tag Index ‘ Oﬁéet‘

Cache set

\
~—

Cache

Data loaded in a specific set depending on its address

Set-associative caches

Address Tag Index ‘ Offset

way 0 way 3

Cache set

\‘— —_—

Cache

Data loaded in a specific set depending on its address
Several ways per set

Set-associative caches

Address Tag Index ‘ Offset ‘

way 0 way 3

Cache set

|

Cache line ——————+

Cache

Data loaded in a specific set depending on its address
Several ways per set
Cache line loaded in a specific way depending on the replacement policy

Cache attacks

- cache attacks — exploit timing differences of memory accesses

1

Cache attacks

- cache attacks — exploit timing differences of memory accesses
- attacker monitors which lines are accessed, not the content

1

Cache attacks

- cache attacks — exploit timing differences of memory accesses

- attacker monitors which lines are accessed, not the content
- covert channel: two processes communicating with each other
- not allowed to do so, e.g., across VMs

1

Cache attacks

- cache attacks — exploit timing differences of memory accesses

- attacker monitors which lines are accessed, not the content

- covert channel: two processes communicating with each other
- not allowed to do so, e.g., across VMs

- side-channel attack: one malicious process spies on benign processes
- e.g, steals crypto keys, spies on keystrokes

1

Timing attacks

How every timing attack works:

- learn timing of different corner cases

- later, we recognize these corner cases by timing only

Timing attacks

How every timing attack works:

- learn timing of different corner cases
- later, we recognize these corner cases by timing only

- here, corner cases: hits and misses

First step: building the histogram

1. build two cases: cache hits and cache misses

2. time each case many times (get rid of noise)

13

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!

13

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!

4. find a threshold to distinguish the two cases

13

Building the histogram: cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time

4. update histogram with delta

14

Building the histogram: cache misses

Loop:

. flush variable (c1flush instruction)

. measure time

1
2
3. access variable (always cache miss)
4. measure time

5

. update histogram with delta

15

Finding the threshold

- as high as possible — most cache hits are below
- no cache miss below

00 cache hits 00 cache misses

o MM W

50 100 150 200 250 350 400
e [CPU cycles]

4

7 = |
A 10
(<]

™

=

How to measure time accurately? (1/3)

- very short timings

- rdtsc instruction: cycle-accurate timestamps

18

How to measure time accurately? (1/3)

- very short timings
- rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc

[...]

18

How to measure time accurately? (2/3)

- do you measure what you think you measure?

19

How to measure time accurately? (2/3)

- do you measure what you think you measure?

+ out-of-order execution

19

How to measure time accurately? (2/3)

- do you measure what you think you measure?

- out-of-order execution — what is really executed

rdtsc rdtsc rdtsc
function() [...] rdtsc
[...] rdtsc function()

rdtsc function() [...]

19

How to measure time accurately? (3/3)

- use pseudo-serializing instruction rdtscp (recent CPUs)

20

How to measure time accurately? (3/3)

- use pseudo-serializing instruction rdtscp (recent CPUs)

- and/or use serializing instructions like cpuid

20

How to measure time accurately? (3/3)

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid

- and/or use fences like mfence

20

How to measure time accurately? (3/3)

- use pseudo-serializing instruction rdtscp (recent CPUs)
- and/or use serializing instructions like cpuid

- and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

20

Cache attacks techniques

- two (main) techniques

1. Flush+Reload (Gullasch et al., Osvik et al, Yarom et al.)
2. Prime+Probe (Percival, Osvik et al, Liu et al.)

- exploitable on x86 and ARM
- used for both covert channels and side-channel attacks
- many variants: Flush+Flush, Evict+Reload, Prime+Scope, Prime+Abort...

D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games - Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P'11. 2011.

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES". In: CT-RSA 2006. 2006.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

21
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P15. 2015.

Spatial and temporal resolution

- spatial resolution: what can | monitor? A page? A set? A line?

— a spatial resolution of a 4KB page means that you cannot distinguish two
memory accesses within a 4KB page

- temporal resolution: how often can | perform a monitoring operation?

— atemporal resolution of Tms means that you cannot monitor more than one
event every Tms: if an event happens every 1us, you can only capture 0.1% of
events

22

Spatial and temporal resolution

- spatial resolution: what can | monitor? A page? A set? A line?
— a spatial resolution of a 4KB page means that you cannot distinguish two
memory accesses within a 4KB page
- temporal resolution: how often can | perform a monitoring operation?

— atemporal resolution of Tms means that you cannot monitor more than one
event every Tms: if an event happens every 1us, you can only capture 0.1% of
events

Both influence the type of attacks that you can perform: an attacker that can only
monitor a 4KB page every minute obtains less information than an attacker that
can monitor a cache line every 100ns.

22

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

23

Cache attack: Flush+Reload

cached

Cacheq

|/

T — —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

23

Cache attack: Flush+Reload

flushes

T — —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

23

Cache attack: Flush+Reload

loads data

—

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data
23

Cache attack: Flush+Reload

I "e10ads dat
Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

Step 4: Attacker reloads the data 2

Flush+Reload: Applications

- cross-VM (memory-deduplication enabled) side channel attacks on
cryptographic primitives:
- RSA: 96.7% of secret key bits in a single signature
- AES: full key recovery in 30000 dec. (a few seconds)

- attacks against pseudorandom number generators
- attacks against RSA key generation

- revival of Bleichenbacher attacks on TLS

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
B. Gulmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE. 2015.

S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG". In: S&P. 2020.

A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019).

24
E. Ronen et al. “The 9 Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019.

Flush+Reload: Pros and cons

Pros

high spatial resolution: 1 line
high temporal resolution

Cons

restrictive

1. needs clflush instruction (not
available e.g., on ARM-v7)

2. needs shared memory

25

What if there is no shared memory?

What if there is no shared memory?

E.g., there is no memory deduplication and no accessible
shared library

Inclusive property

core0 corel

- inclusive LLC: superset of L1 and L2

1

L2

LLC

27

Inclusive property

core0 corel

.

L2

- inclusive LLC: superset of L1 and L2

LLC

27

Inclusive property

core0 corel

- inclusive LLC: superset of L1 and L2

1

|

L2

‘inclusion

LLC

|

27

Inclusive property

core0 corel

- inclusive LLC: superset of L1 and L2

1

|

L2

LLC

|

27

Inclusive property

1

L2

LLC

core0

corel

- inclusive LLC: superset of L1 and L2

- data evicted from the LLC is also
evicted from U and L2

27

Inclusive property

1

L2

LLC

core0

corel

‘eviction

- inclusive LLC: superset of L1 and L2
- data evicted from the LLC is also

evicted from U and L2

- a core can evict lines in the private L1

of another core

27

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

28

Cache attacks: Prime+Probe

N Y S Y S Sy

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

28

Cache attacks: Prime+Probe

loads data

R

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

28

Cache attacks: Prime+Probe

loads data

R

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
28

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
28

Prime+Probe: Applications

- cross-VM side channel attacks on crypto implementations:
- El Gamal (sliding window): full key recovery in 12 min.

- tracking user behavior in the browser, in JavaScript

- covert channels between virtual machines in the cloud

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P'15. 2015.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015. 29
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS'77. 2017.

Prime+Probe: Pros and cons

Pros Cons
less restrictive - lower spatial resolution: 1 set
1. no need for clflush - lower temporal resolution:
2. no need for shared memory probe n addresses to evict 1
line

- prone to noise

30

Prime+Probe in practice

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?

3. and in which order do we access them?

P. Vila, B. Kopf, and J. F. Morales. “Theory and Practice of Finding Eviction Sets”. In: S&P. 2019.
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID'15. 2015.

31

P.Vila et al. “CacheQuery: learning replacement policies from hardware caches”. In: PLDI. 2020.

Prime+Probe in practice

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?

3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set and same slice (issues #1 and #2)

2. an eviction strategy: the order in which we access the eviction set (issue #3)

P.Vila, B. Kopf, and J. F. Morales. “Theory and Practice of Finding Eviction Sets”. In: S&P. 2019.
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID'15. 2015.

31

P. Vila et al. “CacheQuery: learning replacement policies from hardware caches”. In: PLDI. 2020.

Port contention side-channel attacks

Background: Hyper-threading

Simultaneous computation technology of Intel.

- physical cores are shared between logical cores

- abstraction at the OS level

33

Background: Hyper-threading

Simultaneous computation technology of Intel.

- physical cores are shared between logical cores

- abstraction at the OS level

— hardware resources are shared between logical
cores

33

Background: Execution pipeline

- instructions are decomposed in
uops to optimize Out-of-Order
execution L Scheduler J
- uops are dispatched to specialized |
execution units through CPU ports
- deterministic decomposition of EE camerre | | | |
instructions into uops emory Subsysto

34

Port contention

No contention

Attacker
instr Port 1
Execution
Schedulerﬂ .) engine

Victim

All attacker instructions are
executed in a row
— fast execution time

35
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.

Port contention

No contention Contention

Attacker Attacker
instr Port 1 instr Port 1
! | Execution | | execution

vt | vitim e
instr
All attacker instructions are Victim instructions delay the
executed in a row attacker instructions
— fast execution time — slow execution time

35
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.

Port contention side-channel attack

Victim

secret == secret == .

l l Monitors port usage o N N

”~ S\

(&
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmo
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmO
Contention on Port 1 Contention on Port 5

36

Port contention side-channel attack

Victim
; T T
Contention on Port 1 S~
POPCNT %r8,%r8 o
POPCNT %r8,%r8
. -
POPCNT %r8,%r8 Secret is 0!

POPCNT %r8,%r8

36

Port contention side-channel attack

Victim

secret == .
l

a b 4) 4
Contention on Port 5 C 2al
VPBROADCASTD %xmm@, %ymmoO
VPBROADCASTD %xmm@, %ymmoO
Secret is 1!

VPBROADCASTD %xmm@, %ymmo
VPBROADCASTD %xmm@, %ymmo

36

Port contention: applications

- end-to-end attack on a TLS server (OpenSSL 11.0h): recovers a P-384 ECDSA
private key
— secret dependent on double-and-add operations of ec_wNAF_mul point
multiplication

- SMoTherSpectre, a speculative code-reuse attack

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
A. Bhattacharyya et al. “SMoTherSpectre: Exploiting Speculative Execution through Port Contention”. In: CCS. 2019.

37

Port contention: Pros and cons

Pros Cons
- very high spatial resolution: 1 - restrictive: requires SMT
instruction! enabled + co-location on the
- high temporal resolution same physical core
. more resistant to noise if - mapping from instructions to
processes do not share a port can change from one
physical core generation to another

- no offline phase of creating
an eviction set

38

Conclusion: We are more or less doomed on the hardware side

CPU Ports
Translation look-aside buffer SS5P'19 $

USENIX Sec'18 <N LLC attacks y DRAM
‘ USENIX'14, S&P'15 USENIX Sec'16

GPU
Lg® |)
S ‘ V S&P'18
Lld, L1i, L2 cache Branch Prediction
BSDCon'05, CT-RSA'06, CT-RSA'07 Ring Interconnect
ASIACCS'20 USENIX Sec'21, DIMVA'21

State of the art today: each component shared by two processes
is a potential micro-architectural side-channel vector 39

Part 3 Which software
implementation is vulnerable?

Side-channel vulnerabilities and constant-time programming

@ Problem?

Side-channel vulnerability

Any branch or memory access
that depends on a secret

40

Side-channel vulnerabilities and constant-time programming

@ Problem?

Side-channel vulnerability

Any branch or memory access
that depends on a secret

Q Solution!

Constant-time programming

No branch or memory access
depends on a secret!

40

Side-channel vulnerabilities and constant-time programming

@ Problem?

Side-channel vulnerability

Any branch or memory access —
that depends on a secret

That's easy, right?

Q Solution!

Constant-time programming

No branch or memory access
depends on a secret!

40

Side-channel vulnerabilities and constant-time programming

@ Problem? Q Solution!
Side-channel vulnerability Constant-time programming
Any branch or memory access — No branch or memory access
that depends on a secret depends on a secret!

That's easy, right?... right?

40

So many attacks.

LadderLeak: Breaking ECDSA

With Less Than One

Diego F. Asanba Felipe Rodrig!
DIGIT, Aarhus University University of
Bra:

Denmark

Bit Of Nonce Leakage

ues Novaes Akira Takahashi
Canpinas DIGIT, Aarhus University

Denrvark

il
dfsranha@eng audk Larsesa@studentsicunicmp e takahashi@esav.dk

Mehdi Tibouchi
NTT Corporation
apan.
mehdi tibouchibr@nconttco ip

ABSTRACT

Although it s one of the mest popular signsture SERETES today,
BCDSA presents a nunber "o implementaion pitfalls, 1t particulat
ame to the very sensitive 1l 1 the random value (known & the
o) generated as part of e Gigning algorithm. 1 s knowh that
‘any small amount of nonce exposure o pasce bias con I principle
lond to a full key recovesy: Lhe key recovexy s then @ particular
Instanee of Boneh and Veskalesi idden number problent (AIND
“That observation has beert practically exploited it smany attacks
o the litesatuce, takong advantate of implementation defects o
‘ide-chamnel vulperabiities i various concrete ECDSA implemen-
ations, However, most of the tacks so far have relied on 3 Jeast 2

Yuval Yarom
University of Adetaide and Data6l
Australia
gral@cs adelaidecduay

cphemeral sandom value called nance, which 3 paticularly sensi-
e i is crugial to make ST (hat the nonces are keptin secret
‘and sampled from the w0 Gspribution over a certals inIeECY
iaterval, I is easy to see that 1§ the nonee is exposed of seused
copletsly, then as altsckes 1 bl Lo extrast the secsel SiENINE key
by observing ony a5 signatures, By exteading his simple obser-
Tation, cryptanalysts have stovered stronger atacks that make
it possibe to secover ¢ exet key even i€ short bit substrings of
o onces are teaked o biased These extended attacks selate keY
ecovery (o the so-calied bidden usmber problem (BNP) of Boneh
“and Venkatesan [151, and 26 part of a line of reseacch initiated DY
Howgrave-Grabiaim and Smact {36), who described @ lattice-based

41

So many attacks.

Ma
Ve
/11129 Fo LadderLeak: Breaking ECDSA
k with Less Than One Bit Of Nonce Leakage

on
Uniy, Dan ey, W;
U o gt Oeng ray Rth Yo, Diego F. Avanba Felipe Rodrigues Novaes Alira Takabashi
57, ey, ity {;{my,p{h €a/. u: A4 DIGIT, Aarhus University University of Campinas DIGIT, Aarhus University
lo 630 Mary, ‘wo M, Denmark Brazil Denmark
(:15:,, ";:Z o T Weny 4 g rld4 Cro, arcy, dfaranha@eng.audk La135663@students jeunicaP be takahashi@esan.dk
ey ;e S) l . .
.\1:,;’01,[;"”(:::”."Z_,"‘“uum Un ke Plic,,. et Mehdi Tibouehi Yuval Yarom
fieq 3 E0ne Wity C‘-\.,,,,,,,frf;u,,,’{ Crey, "‘w@,’ orpy, la 1y n. Ury / NTT Corporation University of Adetaide and Data6l
et ki, e S L™ Pl g s ¥l S of Sig, apan Australia
,.D,,5¢<.p/9l;;,, ;lm,,,k‘"dlq,‘,, :p ey g iy Secury, g, " Cy, -~ e i br@hconttoip gval@es adelaidedu o
largy,. flelg ' M Oty Poipy g Side g
ad, f“‘wf;“"’v iy U, "'n,,’,h o e € ,:"’d;;n‘ha;‘,,ﬁ i, €55 a"he / ephemeral random value called nance, which 1 pantieularly sensi-
In g P bt g gy 1 i o ECp, ar. a 19 nemestoday. s crucial to make sure that e nonces are kept in secret
(_’ul/u“': Wopy, ere ¢ el gy o s 23 ¢ ,,: 4 Lo d’ o, o, in partiulac o sampled from the uniform Gspribution over a certals inIeECY
Plojgg e, g nop it _,,,‘I'fu,,‘,‘,': . e i p, e (knowen as the iaterval, I is easy to see that 1 the nonce is exposed of seused
lon u,‘\;:/k,,%"‘u,,,«. f‘v ergy ,‘,,')- Ho, 1‘:{)/,& et o g, atag, a1t s knows that completely, then a attacker is able to extract the secret signing key
ety it o, nteg 5 it s Progy gy, i princple T envang oply afew signatures-BY stending this simple 0bser”
ety Wt 8 th; ey, o . o on, is then a paricular Tation, cryptanalysts have stovered stronger atacks that make
hegy.! Curyg iy e ar, . he oo F 0 " e g€t o Vric, e problem (ND) it possibe to secover ¢ S coret key even if short bit substrings of
- 25515 Mengy Ol " vey y) K:Un,,ux Sloited in masy attacks the nonces are teaked Of biased. These extended attacks relate key
w,m_'vn & ten i, "t(;,”‘f‘”(y,l;'ﬁ:,‘ plementation deficts or recovery (o the <o-called hidden nussber pmb\mn(HNP) of Boneh
¥ the ‘,,)Q'«%, I:M‘ 4 e ex, “hep o, * bet Diy amerete ECDSA implenee” “and Venkatesan (151 and ace past of a line of reseacch initiated DY
ey oy dg, o, v sl 0221 ey Howea e rabam and Smart 36} WO Jescribed a tattice-based
o

41

So many attacks.

May, the

Fo,
/‘ll‘tadr on

With Less Than One

Felipe Rodriges Novaes

. kin ECDSA
LadderLeak: B;;": (l)fi\once Leakage

Akira Takahashi)
DIGIT, Aarhus University

e Diego F. Aranba University of Campinas De;:n:ark e
; s University i Akahashi@es.al
Uniye, Dan, Vi ra/ ¥ oy DIGIT, Aarhus University [i—— talkal
U5 oppt Ceng, Rea LA peasark LansseEs@shudentsic
v A : .
2 Sty n:‘.""r 1.»,,,: Wo o, N dfaranba@eng.au.ds yuval Yarom T
sty “("’vuup’"'m g 0 d A arq”.[Mehdi Tibouehi University of Adetaide a1
e 0t Uy, Ltk Pp/i(,a ecy,, NTT Corporation Aust(z\\‘ll\i o
fky Ctng 1.,2“""* o tleny, Y ns tas Si, apan. reo] yval@cs.adelaides S
b i et g bt 8 i, Vs, g °fc, de oy ibrahconticol oo v illed rons W B BSEEOE E
- ongg, O iy Sany, *Ouny,, TCasy, ipe, "anj, r Q, ephemeral ¢ that the ponces o
e Eomey " ith e i ety iy Ve n, ol to make sure U o certain LEEET
L Un s 1 o €25 nes P it is crucia o ibation over & e
ey, Pan, . 02555, ot) 5 v u the uniform dis! ed or reused
ten et 519, i u i ¥, 19 shemes t0day, d samphed from ¢ nomce is eXpOSE
L5 a cop Mess 11" s, ing el Vers;y vy » and samp! ee that if the 1oV ningkey
Sty St oy 2V p Uiy € chg, i iy o 4o Yar, s, in particulat Cerval. I s easy 10 5€€ extract the scesel SIgAINg
Cong, WP o Wlime o ery o Pint tay, oy, M, Pvajgy X Adey, 10m 4 the ot " o attacker is able 10 © s shnple obser
U U iy e, Pt iy o " Of gy U @cy oL, ue (known a8 comapletely, then ¢s. By extending this s -
iseqy e i Vithe ey Pl ey ECDy, gy € g e that ¢ a few signatire cks that make
adyy, o, Sde. oy ety sy, lon, ,, "Ploy ‘g Dy, is known that cing only & " overed stronger attac b
it el 0 My L gl "% gy, - leady agy 0 MISKROWE LT by obserE AR ave discovered SUODEST SRS ings of
Aty Bt et g s on u/“”'h« " er, ;'u,,b au sias can in Pris i;’ vation, crypial ex the secret key even i 5hu; e elate key
(Ol Yo e jy ien nt g 2l ' i nly i a particulas assible to recover the 5 se extended pH1acks 1
Lol <7 sy e gp L0 e, g7 . Prog s then a particud it poss ! 3. These ex %
ot 50 1y on C}" e o iy (0 Ry, aumber problem (INE) pha nmccsnfﬂ\”‘hd\: [d‘::\;;;'nnum\)crpmb\mn(ﬂlsv) ‘ilin‘:b‘;
ton e Strae |, Petto, C " h Ot Ve, ’ N cks. e so-caliel o earch initiales
Of gy 1 agy,, e gy, Orm iy ay i Prog: e, ite any attad] v to the so- e of reseats !
e Lt f:‘" Wy " 4 o e Phyyt i s “MU:«:;::“ Gefects or 'L,:‘(*ﬂ katesan [15], and are PJ{‘K‘AT :1‘\‘: Jescribed a tattice-based
ey, lure o M thiy Te, ctipy 0, ! the vy " ieal ety ypleme o and VetiTe - o and Smart {361,
k<O Cy are g, he agy. it} Py ete ECDSA implemet Howgrave-Grabar
s o255 Poing ey, ek bet,, 1 OnCTet® atleast 2 #
; on el g ey, peq 0 ar have rlied 00 162
it o e, 5
sy

Daniel De Almeida Braga

daniel de-almeida-braga@irisa.fr pak

Pierre-Alain Fouque

PARASITE: PAssword Recovery Attack against Srp
Implementations in ThE wild

Mohamed Sabt

Univ Rennes, CNRS, IRISA
Rennes, France

ABSTRACT

Protocols for password-based authenticated key exchange (PAKE
allow two users sharing only a short, low-entropy password to
establish a secure session with a cryptographically strong key. The
challenge in designing such protocols is that they must resist offline
‘dictionary attacks in which an attacker

Univ Remnes, CNRS, IRISA
Rennes, France

hamed.sabt(fr
Univ Rennes, CNRS, IRISA
Rennes, France

KEYWORDS
SRP; PAKE; Flush +Reload; PDA; OpenSSL; micro-architectural at-
tack

ACM Reference Format:
Daniel De Al

Pierre-Alain Fouque, and Mohamed Sabt. 2021

X

So many attacks.

May, the

Leak: Breaking ECDSA

Bit Of Nonce Leakage

. an One
Fo, With Less Th Akica Takahashi
At'ack urep B Felipe Rodrigues Novaes DIGIT, Aarhus University
on e Diego F. Aranba University of Caropinas Denmark o
Unjy,, Dan Cre DIGHT. Aarbs University Brazil b rakahashi@es.a
v s o
ety o Geng Denmark Lar3s663@students icunicar
i in M)
e G o Vg ey Verg, dtaranha@engandk) Yuval Yatom
L Bsyy By, My 0 d 4 arq”. Mehdi Tibouehi University of Adetaide at
gt eney T P Pplj. [e('tu NTT Corporation i
€5 o Vearg 3 < adelaide edum
tcjy g™ oy e, i, ral g apan) yval@es adelaide) s
oy A o Vit ot a/pe,,nm.g hs of ide i br@hconttcolp led nance, which is partieutery S
Mo om0 exgyy coy Sy, meral sandom value <2 e nonces are kept in seCi€!
Mopy om0 1€ g oy ! an; 7 a, ephemera o re that the nonces e
fieg 80me, " ¢, "Ple ji e heg Ha Ve n, crucial to make suré ex a certain intes
L by, Uy Li o d, 25 hey jves it is crucia distribution oves & ¢
ey, o, ldey. . €255, Pt e, 5 . w he wniform dis! ed or reused
teny ler g 0515, i S€c iy, Ya 19 shemes t0day, sampled from the ¢ nomce is EXPOSE
Lip 5 cop 58 Ay Caly,, ingy Very, Vaj E and samp) e that if the nom¢ ming key
oo gcry,, sty Pl by py ey, e ity o 3 Yo s, in particulat ol I s easy to se¢ e et he secyel signing
i g i P it - Pl Aep gy 01 e T e anatscer s e 10 0 e
s e i e Pl et g, ey ang e et ey afe sigastures BY 1 O ke
In 2ty i sy Bt Peryy, o s h g, e ey, €y, an i principle Y cryptanalysts have discovered SUOTE i substrings o
5 o, e g e ity 275 g i 2 lecy Clin " ony e e articular VAU T vecaver the secretKeY SO acks selate key
o M gy 1 , /l.:n,,u"” Lty 410 S 7 ‘*b‘zfp"mml'" L (N :‘hi"‘r:; e are leaked or biased T““‘; f:pmmm (HIND) of Boneh
ot 3¢ gy 0 et a0 8 i (0 Oy O g, aum em (61N e nomees B8 U0 ed bidden nustbe N iaedby
S S a or o e 53008 g D any attacks ey to the so-ca ine of reseatch i
S atic ha P i,) ap, Stme Proge, Pong oited in » recovery ¢ e past of a lin e e based
,(,,a"'://u,,lvh:: Whey 1' a1, N {[aty, mou,m: m,}%:,.,%' us l:“fmmaw, defects of T Venkatesan [15] a;\?:;}“"[‘ml who described a tattice-based
< ‘o % the - Clury) i Vit oyt K CECDSA implemen” ave-Grabam and St 3
esggy Cirvegy, poj © e at g s, Py gnrete BC Hower
5 e, gy o, Mcky Yack, ere e
on Y. th . A\‘(.[“’U .
o e,

the o " can
the g, " attg, " o
g,

.

*ecoy,

atleast 2
ior. o far have relied on 3t leas

PARASITE: PAssword Recovery Attack against Srp
Side-Channel Analysis of SM2: antations in ThE wild
A Late-Stage Featurization Case Study

Nicola Tuveri
Tampere University of Technology
Tampere, Finland
nicola.tuveri@tut.fi

Cesar Pereida Garcia
Tampere University of Technology
Tampere, Finland

Sohaib ul Hassan
Tampere University of Technology
Tampere, Finland
sohaibulhassan@tut.fi

Billy Bob Brumley
Tampere University of Technology
Tampere, Finland

Pierre-Alain Fouque

Mohamed Sabt

hamed sabt@irisa.fr
Univ Rennes, CNRS, IRISA

Rennes, France

Iniv Rennes, CNRS, [RISA
Rennes, France

KEYWORDS
sge (PAKE) SRP; PAKE; Flush +Reload; PDA; OpenSSL; micro-architeetural at- 4
wssword to tack
1g key. The

ssist offline ACM Reference Format:
numerates Daniel De Al Pierre-Alain Fouque, and Mohamed

bt. 2021

DSA
e Leakage
Akira Takahasbi

So many attacks.
Leak: Breaking EC

Bit Of Nonc!

Ladder
With Less Than One
Felipe Rodrig!

University of
Bra

ues Novaes
Canpinas

unicampbr

DIGHT, Aarhus Usiversity
Denmark
takahashi@esav.dk

M,
Y the
ttae, OUr
Cko th B,
Uny,, Dan;, 'Isev N I’V,'t
i, el G eray o0 ¥, Diego F. Avanha
Ung, ¥ of p,, “Clik, /R, () nha
Vergyy, " Cu n u: DIGHT, Aartyus University
g, i oy eal. A
i STRap., P OF Ay Wiy ~W, ; Denmark il

i s Vang Or/y A Crog,, dfaranba@eng.aud' La135663@studentsic

tac, %sige 55 ch;

ol A g Pl ' Uy 1 Ppli, Mitec, ~ehi Yuval Yarom
Moy Pl ot Petter 215 i, L5ty o leny, atj,, clur, University of Adelaide and Data6t
e oy ! Teg, Vo]’“""r}f alg Australia
Lyt s 25515 P i d@cs adelaide cdua
o By tang O, r
sty ety iy e clled nanee,which s pariedtarty S
i o e 1 g C ‘vt the nonces are keptin secret

I g 4,,""»[, iy, ertjg “vion over a certain integer
ot oy, e ¢ s ed g; ~evosed or reused
Plogyy the ¢ e g Cy ide Cy, “amingkey
o<t O anneyg
g g e
e 2Cal g
bt iy Ohaiy
Wy Ut op- ot this . of "€ ag;, rer, ul y
! Curyy o Vear i gy the Ta A san!
525y eng, ol on, 7.1, 4 Utecy,. Vet 40, Isiny 7. laya1 " Nicoy,
gy ion ning Pieal, U L ” gy and g ¢ Tuve
es g "85 gt Rt gy K @ degy o Ol gy, 1 Bigy, et
e o e ey o g Ve, . ey 0 e Y Bog "
tiop Vgt e ong U i 1 Mpacy it Strace ayae, b e Sle v Brumye,
. ons o, Ypen, 2 Seye, Si e o @ 87 ey
si . e fogp ! Widey, € Chapy Mt “mai g, (cyy, Arf’»,{/m b Y
- 2 Oty gy ey g€l Ay Lo CHAE), gy Ol
ide-Channel A Ungi 5 they o CPloyeg AT g d Hapy Bibray,
A Lat nalysis of SM2: Cak gy s P07 e Softygp key 4, Gy @
- . L con Besses 1O0S they, "W they o o are the ba tung,
e-Stage Featurizati COmpi e and 1Y ey e wigy e, iy
ation Case St losiy e o Ui We 1 W Sune,” hoose e or
Nicola i Sicaly S piogy MUl e "cor CStigar, 265 oM ey
Tampere Uni Tuveri ien 4y S o steny Precis i exiy, bid Whay trage d/'" hoge zed ¢,
: iversity of Technology Sohai wt™%ing g "Plem . V1 1 o iy Datiog \()l(wmllﬁan,A Sting kc,‘ -
ampere, Finland ? Tamy ; "8ing o Pmen Ploiting K5 o nduc; evey ¢ lb SIS i
] pere University of Techn, 0y, 2 ey, th cin 2l Formg gy e
y of Technors omag, - tese N O e it s, S g M on o
2 . gy Uacks i, oM angyy,,. “Peci cona e a o does_ v0ve, g
sol assa D er uy s, gy il] 0 nt
haibulhassan@tut.fi L"""lzﬂlof:h)'l,g uZ,‘ W ek """nicv':,’ ding ™ "l b@huv,:r"cmunf
. 5, 1o, Ehals Uripys ling ;) O o o cr low, Wit
Billy Bob Brumley e (PARL £, "”“\uuulyu’l-'m, gy ((:"Q\'dl'r’., ”"‘f’ﬂmuul the I(,:'
e (AR Sy g, P 1 it g ity e Pl
N en en VS degyy - Cler dou Pllong, . P! P v,
1g key. Th e, S i (1S cap ¢ S ral, iong) 40
e inar, Within ;, ¥ Cayg, ¢ e Pearge ™ Pargp
ssistoffline ACM Ref D & 50fty 1 CXtre Wongge IS i LTS 41
numerates Daniel De i‘:““dzwmn ity oy ibry el g Bt oy
] e Atmenda Do, Pietne ALitiaay) 40d g1 Mittjng

nicola.tuveri@tut.fi
. Cesar Pereida Garcia
ampere University of Tech
‘ v nology
Dniversy of Te Tampere University of Technol
; e chnology
Tampere, Finland

So many attacks.

Ladder

With Less Than One

Leak: Breaking EC

DSA
Bit Of Nonce Leakage
Akira Takahashi
DIGIT, Aarhus University

ues Novaes
Denmark

0y rth
on 8e
ey, W,'t
en, Cray hy, Diego F. Avanba Felipe Rodrig
e Rea u: 4 DIGIT. Aarbus University University qu;\mpmas
or, Vv [_w . Lo
. Vary, g g, 0, e, Denwmark
Upeyy g " g 4 10a, dfaranh \35603(7:\-\&2:1(: s jcunicamp bt \akahashi@esavdk
dy L ar--
4 Uiy, ke - ~rhi Yuval Yarom
fieg ' wa{\& University of Adetaide & nd Dataél
) BIaC G Austelia
o 0(3“60 4\ DRB @es adelaide edua
et
?Se“ C\QS) C - . \\mo\n“ 1o called nance, which pantieularly sensi-
o R o hat the pences ‘e kept in secret
i ¢ e’t,ﬂe d < o over certain iDLCEET
anied O K c@‘e“ pen“ t\g Side e ~wwosed of ‘:::3
PaL - anids noand®™ \@“\“\c\\ a""els ghey
‘ g2
et sy ‘ﬁ@@\ el el
aana® @ et ul
S Dieg! ad " geydit a a5y 1
(KU ‘-"“‘“') L deste rsipy a1 51, Ni
sy u‘ jersi PR o Qg ‘,7" er 'ndB,;la Tuveris
i h e,
o7el A ;ulu“" e Abgy, ,,,(,{ {/ Very e Ll / ob g
ogniversity e ’10(7 ban Sy, g, Tumje,, 1
ar g, C Ung idyy, v
w © om), Hay, 21t b7
oy e bang, ¢ "er
e <\s:::::f‘3 S are - / lun
wRGe, e gl
,\‘.m\\% ”w.;‘ ey. :'v o5 g
Cate 'S the n
nd sty e
2 cmﬁ wh trate 1y .
\\a ! binggipn 40 ‘011“ difr it eryp,
e O e N s oy P Brap,
R i c e i
s el e tackg dee ing i) € arigy, e m; Jl\l’pm,” 10h o, for
-M.L,,(_’E‘ry wm" Iney, a;,,, ‘\L e Al o e : Detingy S8 ‘;" it g€ 0 cho, Mat 1,
e M) e Wity e, o1 d«,""d”fdufm""'cw, e oy 2 4 e e ot
suate “natio "'*' d“ ot iy gy KV ;,“’"’Cvcls i€ Way o Vior <1mon.
® \ to.gp, trigy 5 o ing ,,, O ! alge 02 cry,,, oW Wi
o]3111 ‘Bob Brumley e (PA'\A—,‘ ‘"luldr "an,‘,, Uprigi, e "@\ul.:"’.z‘ra,,,;f the o
pere University of Technol wsword to - Pdnu,,. ey, 1 8 0 i Gireq . Plimigiy
mology 1g ke o el du(liongy " Pliong) ive,
g key. The o e S a0 We g a0 etrs
sis 'v... ey, Plame,
Sitoflline ACM Reference Fommat oo 5 exgpoe St g 7 eters
numerates ce Formatt vy € librapy o) ate vacy
O 1 digap 40 oy
\ga, Pierre-; ‘\I.\m'!":r and g <M exe litting
M algg o SReeyy =

 Tampere, Finland

41

So many attacks.

CDSA
| adderLeak: Breaking E - taalkase

+ CVE-2005- 0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-20’I6-7440,
» CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
e CVE-2018-0737 CVE-2018-10846 CVE-2019-9495

I eptin secret
o i nteger
n,(,,"" bra - sed or eused
L saming key
e Y -
" CVE 2020 16150 CVE 2020 36421 CVE 2023 5388
CVE-2023-61 35, CVE-2024-37880
o eI piegt o quas e L gy d B
o COWEY gmiversi® o v U San DY KU uu\m) e agodt® € @ b gy Mley 1
ot o e, 05, (o S8 Abg @ g ’Q/A */{/,a ity
L ersity 0) and ! -Cop,)‘
AUNVerS L ersity @b,
el A Um} lide and "4 Cu, /@”‘”’ﬁ
ve sity O}
ot » e By,
“ \1 Sury hooge 1
e fe VY. dogy gy 0
er, %on jon Stigy g e oy, ized ¢y,
R ‘d‘sf:,ci" o " whay \U”:«- differ, ’, h \18 g key,
. ; 2 Sofy, s
,.\:(-\“"‘Zw\uﬁ““ st ® 4 es i 0 ever o 7 b Porimg o Pisin
e irically e oft® 10 Ucip, Uity Per ‘ege,
P e e wod *(cq o 54 sta e G et " Permeqy; e
",-n*\““ e Rkag‘,‘ \\"““n“\‘\c\\\“ x o e “:;v“‘ Redh e ey S cr dey \n:. ;\' the \‘M:"’Onhc c,,,L,:/u all g
de & gG re weess - CIY attan "CTabijjg € Seey arg;ye < cat, °s)
o RO T <o hegy ot atacy < Dilti oy dizegy MCation 1 "Pon,
 sooies ﬁ“:‘:‘sc“c(< w0 B Y Sty & Eny wm,,q‘r“"’"’"& g i g O o ongs o
e Ty N A eny? A«\\\\\ e. ~osAn@tutfi ions, 1, o2 St O g O oy
a5 245 s s\\“ et &0 oo “\w \ge (PAI_,“WM:L,, liong) rae 8Ly, it o8 Py O 41
e S C"“ﬂ wse e s ¢ Billy Bob Brumley sseword to o ‘"A--‘: 1';(. '\““" cu(We g m/m
S0's K Tampere umvmny of Technology 1g key. The o Mt & SOl “"rcmf
ex, e sistofline ACM Reference Format i, < libry

Tampere, Finland

Al el e e Al

So many attacks.

CDSA
| adderLeak: Breaking E - taalkase

+ CVE-2005- 0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-20’I6-7440,

» CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,

+ CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, .

:MA
artain integer

= CVE-2019-13627, CVE-2019-13628, CVE-2019-13629, i

nu,,, o

(g'b”y CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE—2023—6135, CVE-2024-37880

L er an e [o
N | univ e) Qo . “ang u
oan CN sunerd i Yo oric: 5“"CD(KU “”M <\=‘ e A 0/.«/{,;,, ”‘/ ﬂua o $ridy, eyt
S0 o of CAIT COSIC () @ gion 8 5 eaquen® Abstry @omay, ’Q/JA) it
s enction B s
\Um\‘ by o,
! “ Cupy ! @y
it
‘VUI“\W O n y (
tude.
EI a ‘ S m\c ,, org,
oy,
en zed
e g Poice | Pers cry,
e - ‘du Creny g Sing ey,
O eSS e 0w e G we -t are ey o S
£ o g o B g (o o lion Y fo
Mo e ko s [ﬂ"“" e ol wmcﬂ-” ccd 3?“ s o ! '7!11",(21525 ingrygn Of 'f el g 1 Singy
rac g s m“‘ e Lentat “ wop! Am* \é covery s el sty Meing Gy ’hlnel. Perneq; "8er g
BT or g o i " e vy Wise a Specig B copgg
e o ,“_‘\.m\:“‘:m.m‘ mm,.\nn ‘:\1‘ “m \nvﬁ o \x ooh :c\.\e M s, e vll'ﬂ:ahmm"\t seem g :nmrg,,L oy o SPongy
st o0 e of ol e Sy D kS w5 we] g e o
. 5 M‘m - g g s e
e 24 se. -wosan@tut 5. 00 o1, opij, g, ©ta
mect & promis® 1ge (PARL & am.h Pf u,:«upl"‘"" .' iely, du(w,,,, /"n(A
soe Billy Bob Brumley wswordtotaca. “m-., it ™ Can e Ve dey
. Pina, e oy,
Tampere Umvsnll'ofTﬂ:hnoIo 1g key. The Mash,, 4 SOty 'rcn,
P p £y ssistoffline ACM Reference Format: “inai, '“"h "

~ Tampere, Finland Al el e e Al

So many detection frameworks, yet so many attacks... Why?

Static [l Dynamic

- millnn.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Tools released

Year

Many tools published from 2017, 67% of tools are open source (23 over 34)

42

So many detection frameworks, yet so many attacks... Why?

Static [l Dynamic

- millnn.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Tools released

Year

Many tools published from 2017, 67% of tools are open source (23 over 34)

Why are so many attacks still manually found?

42

Related Work

- do developers use CT tools? [S&P 2022]

— most developers do not use them, or o8 gl e
do not know about them L L3

o ofo S 21 4.5% Don't use tools (2%)
how to improve the tool usability? T e
[USEN |X Sec 2024] i 3?[,_8;/0_H_aven'ttr\ed to use tools (14%)
— most developers find them really Ll

25% Don't know about tools (11%)
hard to use
J.Jancar et al. “"They're not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks”. In: S&P. 2022. 43

M. Fourné et al. ““These results must be false”: A usability evaluation of constant-time analysis tools”. In: USENIX Security Symposium. 2024.

Would the tools actually work to automatically
find recent vulnerabilities?

"

Comparing recent vulnerabilities (2017-2022) with past vulnerabilities

sliding window Gaussian sampling
RSA decryption . . i
Montgomery ladder bignum arithmetic 1yach-to-element
T-tables (timing) function
AES encryption ECDSA signing
| | | | | ' | | | | | | I | | »l
— A A R A B | I
1996 2005 2007 20M 2q14 2017 2q19 2021
square-and-multiply binary GCD Sllsdésg:lgtlgéio?w
RSA decryption RSA decryption P
sliding windgqw
Montgomery ladder RSA keygen
(cache) binary GCD T-tables
ECDSA signing RSA keygen PRG
ECDSA signi
wNAF mult. EMSZ s?glﬁ?r:gg WNAF mult.
ECDSA signing key handling
WNAF mult. binary GCD
SM2 signing key handling

45

The SAME vulnerabilities keep resurfacing. Why? (1/2)

New contexts:

- Key generation
- Key parsing and handling

- Random number generation

(Mostly OpenSSL) Vulnerable code stays in the library
and the CT flag is not correctly set

A. C. Aldaya et al. “Cache-Timing Attacks on RSA Key Generation”. In: TCHES (2019)
C. P. Garcia et al. “Certified Side Channels”. In: USENIX Security Symposium. 2020
S. Cohney et al. “Pseudorandom Black Swans: Cache Attacks on CTR_DRBG". In: S&P. 2020

46

The SAME vulnerabilities keep resurfacing. Why? (2/2)

New libraries

- MbedTLS sliding window RSA implementation
- Bleichenbacher-like attacks in MbedTLS, s2n, or NSS

Vulnerability is found in OpenSSL but
patches are not propagated to other libraries

M. Schwarz et al. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA. 2017
E. Ronen et al. “The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations”. In: S&P. 2019

47

Most vulnerabilities stem from code
already known to be vulnerable

48

Side-channel vulnerability detection tools (1/2)

Ref Year Tool Type Methods Scal. Policy Sound Input L W E B Avaiable
[85] 2010 ct-grind Dynamic Tainting ® CI © Binary v
[15] 2013 Almeidaetal. Static Deductive verification O CI @ Csource

[55] 2013 CacheAudit Static Abstract interpretation o co Binary v v
[22] 2014 ViRuarCerr Static Type system O Cr @ Csource v v
[70] 2015 Cache Templates Dynamic ~Statistical tests o co Binary v
[13] 2016 ct-verif Static Logical verification © CT e LLWM v
[107] 2016 FlowTracker Static Type system © CI e LM v v
[56] 2017 CacheAudit2 Static Abstract interpretation O CI @ Binary v

[28] 2017 Blazy etal Static Abstract interpretation p CT @ Csource

[17] 2017 Blazer Static Decomposition © CR @ Jaa

[48] 2017 Themis Static Logical verification © CR @ Jama Y

[127] 2017 CacheD Dynamic DSE ¢ €O O Bimay / v

[136] 2017 STACCO Dynamic ~Trace diff © R Binary v
[106] 2017 dudect Dynamic ~Statistical tests © ce Binary v
[117] 2018 CANAL Static SE o co LLYM v v
[47] 2018 CacheFix Static SE © co € 7| v
[34] 2018 CoCo-Channmel Static SE, tainting ® CR © Java v

[19] 2018 SideTrail Static Logical verification O CR e LM VAR v
[114] 2018 Shin ctal. Dynamic ~ Statistical tests p CO O Binary v

[132] 2018 DATA Dynamic Statistical tests © CI O Binary VAR
[133] 2018 MicroWalk Dynamic MIA @ CI O Binary v v
[110] 2019 STAnalyzer Static Abstract interpretation e CI e ¢ v v
[95] 2019 DirFuzz Dynamic Fuzzing © R O Jaa v v
[126] 2019 CacheS Static Abstract interpretation, SE @ CT o] Binary v v

[35] 2019 CaSym Static SE © CO e LM v oV

[54] 2020 Pitchfork Static SE, tainting e CI © LM 7| v
[66] 2020 ABSynthe Dynamic Genetic algorithm, RNN. ~ © CR O Csource v
[72] 2020 ct-fuzz Dynamic Fuzzing © CT O Binary J/ J/ v
[51] 2020 Binsc/Rew Static SE e cT Binary v
[20] 2021 Abacus Dynamic DSE e cCr Binary v v
[74] 2022 CaType Dynamic Type system © Co Binary v

[134] 2022 MicroWalk-CI Dynamic MIA e cT Binary,JS v v 49
[140] 2022 ENCIDER Static SE e cCT LLYM Y v
[141] 2023 CacheQL Dynamic MIA, NN e cr Binary g 7

Side-channel vulnerability detection tools (2/2)

—Abstract int. 5 tools

Frameworks ——

. ———Type system 2 tool
Static P y. _oo s
———Symbolic execution 7tools
Logical reduction 5tools
——Trace comparison 11 tools
L Dynamic —

Single trace 4 tools

50

Side-note: Why you want to detect vulnerabilities at the binary level (1/4)

- the compiler is not your friend, it just wants to make stuff fast
- recent example: Kyber implementation, CVE-2024-37880, June 03, 2024

51
https://pgshield.com/pgshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqgc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

Side-note: Why you want to detect vulnerabilities at the binary level (2/4)

Expanding a string into an array of integer, the wrong way

void (int16_t r[256]1, uint8_t *msg){
for(i=0;i<16;i++) { // outer loop: every byte of msg
for(j=0;3j<8;j++) { // inner loop: every bit in byte

if ((msg[i] >> j) & 0x1) // branch on j-th msg bit
r[8*i+j] = CONSTANT;

else
r[8xi+j] = 0;

52

https://pgshield.com/pgshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

Side-note: Why you want to detect vulnerabilities at the binary level (3/4)

Expanding a string into an array of integer, the right way

void (int16_t r[256], uint8_t *msg){
for(i=0;i<16;i++) {
for(j=0;3<8;j++) {
mask = -(int16_t)((msgli] >> j) & Ox1);
r[8*i+j] = mask & CONSTANT; // no branch

53
https://pgshield.com/pgshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqgc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code?

// x86 assembly

xor eax, eax
.outer:

xor ecx, ecx
.inner:

movzx r8d, byte ptr [rsi + rax]

xor edx, edx

bt r8d, ecx // LSB test on (m[i] >> j)

jae .skip // unsafe branch

mov edx, 1665 // load of CONSTANT (may be skipped)
.skip:

mov word ptr [rdi + 2*rcx], dx

inc rex

cmp rex, 8

jne .inner // safe branch: inner loop

inc rax

add rdi, 16

cmp rax, 32

jne .outer // safe branch: outer loop

ret

54
https://pgshield.com/pgshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqgc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code?

// x86 assembly

xor eax, eax
.outer:

xor ecx, ecx
.inner:

movzx r8d, byte ptr [rsi + rax]

xor edx, edx

bt r8d, ecx // LSB test on (m[i] >> j)

jae .skip // unsafe branch

mov edx, 1665 // load of CONSTANT (may be skipped)
.skip:

mov word ptr [rdi + 2*rcx], dx

inc rex

cmp rex, 8

jne .inner // safe branch: inner loop

inc rax

add rdi, 16

cmp rax, 32

jne .outer // safe branch: outer loop

ret

.outer:

.inner:

.skip:

movzx
bt
Jjae
mov

ret

// x86 assembly

r8d, byte ptr [rsi + rax]
edx, edx

r8d, ecx

.skip // still here :(
edx, 1665

54

https://pgshield.com/pgshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqgc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

Side-note: Why you want to detect vulnerabilities at the binary level (4/4)

Now, what does the compiler do with your code? Yes, it <+ optimizes it <

// x86 assembly

xor eax, eax
.outer:
xor ecx, ecx
.inner:
movzx r8d, byte ptr [rsi + rax]
xor edx, edx
bt r8d, ecx // LSB test on (m[i] >> j)
jae .skip // unsafe branch
mov edx, 1665 // load of CONSTANT (may be skipped)
.skip:
mov word ptr [rdi + 2*rcx], dx
inc rex
cmp rex, 8
jne .inner // safe branch: inner loop
inc rax
add rdi, 16
cmp rax, 32
jne .outer // safe branch: outer loop
ret

.outer:

.inner:

.skip:

movzx
bt
Jjae
mov

ret

// x86 assembly

r8d, byte ptr [rsi + rax]
edx, edx

r8d, ecx

.skip // still here :(
edx, 1665

54

https://pgshield.com/pgshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqgc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

Benchmark: cryptographic operations

Unified benchmark representative of cryptographic operations:

- 5 tools: Binsec/Rel, Abacus, ctgrind, dudect, Microwalk-Cl
- 25 benchmarks from 3 libraries (OpenSSL, MbedTLS, BearSSL)

- cryptographic primitives: symmetric, AEAD schemes, asymmetric

L. Daniel, S. Bardin, and T. Rezk. “Binsec/Rel: Efficient Relational Symbolic Execution for Constant-Time at Binary-Level”. In: S&P. 2020.

Q. Bao et al. “Abacus: Precise Side-Channel Analysis”. In: ICSE. 2021.

https://github.com/agl/ctgrind

0. Reparaz, J. Balasch, and I. Verbauwhede. “Dude, is my code constant time?” In: DATE. 2017. 55,

J. Wichelmann et al. “Microwalk-Cl: Practical Side-Channel Analysis for JavaScript Applications”. In: CCS. 2022.

Benchmark results: cryptographic operations (selection)

Binsec/Rel2 | Abacus | ctgrind | Microwalk

#v ®v HvV Hv

AES-CBC-bearssl (T) 36 36 36 36
AES-CBC-bearssl (BS) 0 0 0 0
AES-GCM-openssl (EVP) 0 0 70 8
RSA-bearssl (OAEP) 2 (X) " 87 0
RSA-openssl (PKCS) 1 (X) 0 321 46
RSA-openssl (OAEP) 1 (X) -} 546 61

- timeout limit (X): 1 hour
- tools generally agree on symmetric crypto, but disagree on asymmetric crypto

- takeaway: support for vector instructions is essential 56

Benchmark: recent vulnerabilities

Replication of published vulnerabilities:

- 7 vulnerable functions from 3 publications
- both the function itself and its context are targeted

- total: 11 additional benchmarks

57

Benchmark results: recent vulnerabilities (selection)

Binsec/Rel2 Abacus ctgrind | Microwalk

V T(s) | V T(s)| Vv T(s)| V T(s)
RSA valid. (MbedTLS) 4 49001 | v 040 | v 27894
GCD ™4 37.74 021 | v 2296
modular inversion 4 24210 | v 024 | v 141.82
RSA keygen (OpenSSL) 017 | & 8.66 6.36 | v 842.02
GCD v 4 X| v 019|v 361
modular inversion 4 x| v 021V 5.96

- some vulnerabilities are missed because of implicit flows

- most tools do not support tainting internal secrets
58

More details in our CCS 2023 paper!

A Systematic Evaluation of Automated Tools for Side-Channel
Vulnerabilities Detection in Cryptographic Libraries

Antoine Geimer
Univ. Lille, CNRS, Inria
Univ. Rennes, CNRS, IRISA
Lille, France

Lesly-Ann Daniel
KU Leuven, imec-DistriNet
Leuven, Belgium

Abstract

To protect cryptographic implementations from side-channel vul-
nerabilities, developers must adopt constant-time programming
practices. As these can be error-prone, many side-channel detection
tools have been proposed. Despite this, such vulnerabilities are still
manually found in cryptographic libraries. While a recent paper
by Jancar et al. shows that developers rarely perform side-channel
detection, it is unclear if existing detection tools could have found
these vulnerabilities in the first place.

To answer this question we surveyed the literature to build a
classification of 34 side-channel detection frameworks. The classifi-

Mathéo Vergnolle
Université Paris-Saclay, CEA, List
Gif-sur-Yvettes, France

Sébastien Bardin
Université Paris-Saclay, CEA, List
Gif-sur-Yvettes, France

Frédéric Recoules
Université Paris-Saclay, CEA, List
Gif-sur-Yvettes, France

Clémentine Maurice
Univ. Lille, CNRS, Inria
Lille, France

1 Introduction

Implementing cryptographic algorithms is an arduous task. Be-
yond functional correctness, the developers must also ensure that
their code does not leak potentially secret information through
side channels. Since Paul Kocher’s seminal work [82], the research
community has combed through software and hardware to find
vectors allowing for side-channel attacks, from execution time to
electromagnetic emissions. The unifying principle behind this class
of attacks is that they do not exploit the algorithm specification but
rather physical characteristics of its execution. Among the afore-
mentioned attack vectors, the processor microarchitecture is of

Perspectives & Conclusion

Side-channel free software, are we there yet?

Nope!

60

Speculative
execution

Dynamic
frequency
scaling

Constant time

Data memory-dependant
prefetcher

Future optimisations?

Beyond constant time

Code that is "constant-time” (and considered
secure until recently) can be vulnerable too!

62

Conclusions

- first paper by Kocher in 1996: almost 30 years of research in this area

63

Conclusions

- first paper by Kocher in 1996: almost 30 years of research in this area

- domain still in expansion: increasing number of papers published since 2015

63

Conclusions

- first paper by Kocher in 1996: almost 30 years of research in this area

- domain still in expansion: increasing number of papers published since 2015
- micro-architectural attacks require a:

- low-level understanding of hardware — micro-architecture, reverse-engineering
- low-level understanding of software — program analysis, compilation,
cryptography...

— work across all abstraction layers!

63

Thank you!

Contact

¥ clementine.maurice@inria.fr

Microarchitectural side channels: from hardware to software

Clémentine Maurice, CNRS, CRIStAL
March 13, 2025—ARCHI 2025

	Part 1 Small example: Flush+Reload on GnuPG v 1.4.13
	Part 2 Which hardware component is vulnerable?
	Part 3 Which software implementation is vulnerable?
	Perspectives & Conclusion

