
A Systematic Evaluation of Automated Tools for Side-Channel
Vulnerabilities Detection in Cryptographic Libraries

Clémentine Maurice, CNRS, CRIStAL
6 June 2024—SWHSec Conference

A Systematic Evaluation of Automated Tools for Side-Channel
Vulnerabilities Detection in Cryptographic Libraries
How infuriating can research on vulnerabilities in
cryptographic libraries be?

Clémentine Maurice, CNRS, CRIStAL
6 June 2024—SWHSec Conference

3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification

attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

3

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

4

Micro-architectural side-channel attacks: Two faces of the same coin

Implementation Hardware

&

5

Side-channel vulnerabilities and constant-time programming

Problem?

Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?

CVE-2005-0109, CVE-2013-4242, CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629, CVE-2020-16150…

5

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?

CVE-2005-0109, CVE-2013-4242, CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629, CVE-2020-16150…

5

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?

… right?

CVE-2005-0109, CVE-2013-4242, CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629, CVE-2020-16150…

5

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?

CVE-2005-0109, CVE-2013-4242, CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629, CVE-2020-16150…

5

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?

CVE-2005-0109, CVE-2013-4242, CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629, CVE-2020-16150…

6

So many attacks...

So. Many. Attacks.

6

So many attacks...

So. Many. Attacks.

6

So many attacks...

So. Many. Attacks.

6

So many attacks...

So. Many. Attacks.

6

So many attacks...

So. Many. Attacks.

6

So many attacks...

So. Many. Attacks.

6

So many attacks...

So. Many. Attacks.

7

So many detection frameworks, yet so many attacks... Why?

Year

To
ol

s
re

le
as

ed

0

2

4

6

8

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Static Dynamic

Many tools published from 2017, 67% of tools are open source (23 over 34)

Why are so many attacks still manually found?

7

So many detection frameworks, yet so many attacks... Why?

Year

To
ol

s
re

le
as

ed

0

2

4

6

8

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Static Dynamic

Many tools published from 2017, 67% of tools are open source (23 over 34)

Why are so many attacks still manually found?

8

Related Work

• do developers use CT tools? [S&P 2022]
→ most developers do not use them, or
do not know about them

• how to improve the tool usability?
[USENIX Sec 2024]
→ most developers find them really
hard to use

J. Jancar et al. “”They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks”. In: S&P. 2022.
M. Fourné et al. ““These results must be false”: A usability evaluation of constant-time analysis tools”. In: USENIX Security Symposium. 2024.

9

Would the tools actually work to automatically
find recent vulnerabilities?

10

Research questions

RQ1 How can we compare these tools?
RQ2 Could an existing one have detected these vulnerabilities?
RQ3 What features might be missing from existing tools?

Recent side-channel attacks

11

Comparing recent vulnerabilities (2017-2022) with past vulnerabilities

1996 2005 2007 20142011 2017 2019 2021
square-and-multiply

RSA decryption

sliding window
RSA decryption

T-tables
AES encryption

binary GCD
RSA decryption

Montgomery ladder
(timing)

ECDSA signing

Montgomery ladder
(cache)

ECDSA signing

wNAF mult.
ECDSA signing

bignum arithmetic Hash-to-element
function

binary GCD
RSA keygen

ECDSA signing
SM2 signing

wNAF mult.
SM2 signing

sliding window
RSA keygen

sliding window
SRP protocol

T-tables
PRG

Gaussian sampling

wNAF mult.
key handling
binary GCD
key handling

12

The SAME vulnerabilities keep resurfacing. Why? (1/2)

New contexts:

• Key generation [AsiaCCS 2018]

• Key parsing and handling [USENIX Sec 2020, S&P 2019]

• Random number generation [S&P 2020]

(Mostly OpenSSL) Vulnerable code stays in the library
and the CT flag is not correctly set

13

The SAME vulnerabilities keep resurfacing. Why? (2/2)

New libraries

• MbedTLS sliding window RSA implementation [DIMVA 2017]

• Bleichenbacher-like attacks in MbedTLS, s2n, or NSS [S&P 2019]

Vulnerability is found in OpenSSL but
patches are not propagated to other libraries

14

Most vulnerabilities stem from code
already known to be vulnerable

Side-channel vulnerability detection
tools

15

Side-channel vulnerability detection tools (1/2)

16

Side-channel vulnerability detection tools (2/2)

Frameworks

Dynamic
Single trace 4 tools

Trace comparison 11 tools

Static
Symbolic execution 7 tools

Type system 2 tools

Abstract int. 5 tools

Logical reduction 5 tools

Benchmarks

17

Benchmark: cryptographic operations

Unified benchmark representative of cryptographic operations:

• 5 tools: Binsec/Rel, Abacus, ctgrind, dudect, Microwalk-CI
• 25 benchmarks from 3 libraries (OpenSSL, MbedTLS, BearSSL)
• cryptographic primitives: symmetric, AEAD schemes, asymmetric

L. Daniel, S. Bardin, and T. Rezk. “Binsec/Rel: Efficient Relational Symbolic Execution for Constant-Time at Binary-Level”. In: S&P. 2020.
Q. Bao et al. “Abacus: Precise Side-Channel Analysis”. In: ICSE. 2021.
https://github.com/agl/ctgrind
O. Reparaz, J. Balasch, and I. Verbauwhede. “Dude, is my code constant time?” In: DATE. 2017.
J. Wichelmann et al. “Microwalk-CI: Practical Side-Channel Analysis for JavaScript Applications”. In: CCS. 2022.

18

Benchmark results: cryptographic operations (selection)

Binsec/Rel2 Abacus ctgrind Microwalk
#V #V #V #V

AES-CBC-bearssl (T) 36 36 36 36
AES-CBC-bearssl (BS) 0 0 0 0
AES-GCM-openssl (EVP) 0 0 70 8
RSA-bearssl (OAEP) 2 () 87 0
RSA-openssl (PKCS) 1 () 0 321 46
RSA-openssl (OAEP) 1 () 546 61

• timeout limit (): 1 hour
• tools generally agree on symmetric crypto, but disagree on asymmetric crypto
• takeaway: support for vector instructions is essential

19

Benchmark: recent vulnerabilities

Replication of published vulnerabilities:

• 7 vulnerable functions from 3 publications
• both the function itself and its context are targeted
• total: 11 additional benchmarks

20

Benchmark results: recent vulnerabilities (selection)

Binsec/Rel2 Abacus ctgrind Microwalk
V T(s) V T(s) V T(s) V T(s)

RSA valid. (MbedTLS) 490.01 ✓ 0.40 ✓ 278.94
GCD 37.74 0.21 ✓ 22.96
modular inversion 242.10 ✓ 0.24 ✓ 141.82
RSA keygen (OpenSSL) 0.17 8.66 6.36 ✓ 842.02
GCD ✓ ✓ 0.19 ✓ 3.61
modular inversion ✓ 0.21 ✓ 5.96

• some vulnerabilities are missed because of implicit flows
• most tools do not support tainting internal secrets

Recommendations

21

Recommendations

#1 Support for vector instructions

#2 Support for indirect flows

#3 Support for internally
generated secrets (e.g. key
generation)

#4 Promote usage of a
standardized benchmark

#5 Improve usability for static
tools (e.g. core-dump initialization)

#6 Make libraries more static
analysis friendly

21

Recommendations

#1 Support for vector instructions

#2 Support for indirect flows

#3 Support for internally
generated secrets (e.g. key
generation)

#4 Promote usage of a
standardized benchmark

#5 Improve usability for static
tools (e.g. core-dump initialization)

#6 Make libraries more static
analysis friendly

21

Recommendations

#1 Support for vector instructions

#2 Support for indirect flows

#3 Support for internally
generated secrets (e.g. key
generation)

#4 Promote usage of a
standardized benchmark

#5 Improve usability for static
tools (e.g. core-dump initialization)

#6 Make libraries more static
analysis friendly

21

Recommendations

#1 Support for vector instructions

#2 Support for indirect flows

#3 Support for internally
generated secrets (e.g. key
generation)

#4 Promote usage of a
standardized benchmark

#5 Improve usability for static
tools (e.g. core-dump initialization)

#6 Make libraries more static
analysis friendly

21

Recommendations

#1 Support for vector instructions

#2 Support for indirect flows

#3 Support for internally
generated secrets (e.g. key
generation)

#4 Promote usage of a
standardized benchmark

#5 Improve usability for static
tools (e.g. core-dump initialization)

#6 Make libraries more static
analysis friendly

21

Recommendations

#1 Support for vector instructions

#2 Support for indirect flows

#3 Support for internally
generated secrets (e.g. key
generation)

#4 Promote usage of a
standardized benchmark

#5 Improve usability for static
tools (e.g. core-dump initialization)

#6 Make libraries more static
analysis friendly

Perspectives & Conclusion

22

Beyond constant time

Other microarchitectural vulnerabilities:

• transient execution, e.g., Spectre, LVI
• data memory-dependent prefetchers, e.g., GoFetch
• dynamic voltage and frequency scaling (DVFS), e.g., Hertzbleed

→ code that is ”constant-time” (and considered secure until recently) can be
vulnerable too!

23

Conclusion

• first paper by Kocher in 1996: 25 years of research in this area
• so many detection tools, yet, so many vulnerabilities (manually) found
• most vulnerabilities stem from code already known to be vulnerable
• we introduced a benchmark for fair tool comparison
• we identified limitations in the current literature and issued
recommendations for the community

https://github.com/ageimer/sok-detection/
... archived on Software Heritage of course ;)

https://github.com/ageimer/sok-detection/

24

More details in our CCS 2023 paper!

Thank you!

Contact

clementine.maurice@cnrs.fr
@BloodyTangerine

A Systematic Evaluation of Automated Tools for Side-Channel
Vulnerabilities Detection in Cryptographic Libraries
How infuriating can research on vulnerabilities in
cryptographic libraries be?

Clémentine Maurice, CNRS, CRIStAL
6 June 2024—SWHSec Conference

	Recent side-channel attacks
	Side-channel vulnerability detection tools
	Benchmarks
	Recommendations
	Perspectives & Conclusion

