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Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations
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Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.
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Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For
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footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.
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For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For
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correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.
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In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.
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Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For
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Attacker model

Hardware-based attacks
a.k.a physical attacks

Software-based attacks
a.k.a micro-architectural attacks

vs

Physical access to hardware
→ embedded devices

Co-located or remote attacker
→ complex systems
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From small optimizations to side-channel attacks…

2013 Haswell

2014 Broadwell

2015 Skylake

2016 Kaby Lake

2017 Coffee Lake

2018 Whiskey Lake

2019 Comet Lake/Ice Lake

2020 Tiger Lake

2021 Alder Lake/Rocket Lake

2022 Sapphire Rapids

• new micro-architectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• micro-architectural side channels come from
these optimizations

• attacker infers information from a (vulnerable)
victim process via hardware usage
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Micro-architectural side-channel attacks: Two faces of the same coin

Implementation Hardware

&
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Research questions

RQ1. Which hardware components are vulnerable…
… and how to use them to leak data?

RQ2. Which software implementation is vulnerable…
… and what are the different attack deliveries?
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RQ1. Which hardware component leaks information?

State of the art (more or less)
1. spend too much time reading Intel manuals
2. find weird behavior in corner cases
3. exploit it using a known vulnerability
4. publish
5. goto step 1
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RQ1. Which hardware component leaks information?

Translation look�aside buffer

USENIX Sec'18

CPU Ports

S&P'19

L1d, L1i, L2 cache

BSDCon'05, CT-RSA'06, 

ASIACCS'20

Branch Prediction

CT-RSA'07

GPU

S&P'18

Ring Interconnect

USENIX Sec'21, DIMVA'21

LLC attacks

USENIX'14, S&P'15

DRAM

USENIX Sec'16

State of the art in 2015:
only the cache and the branch predictor were explored
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Motivation

• performance optimizations are mostly undocumented
• side channels come from these optimizations

→ understanding them is crucial to characterize the attack surface: build new
or improve known side-channel primitives
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General approach
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RQ1. Which hardware component leaks information?

Translation look�aside buffer

USENIX Sec'18

CPU Ports
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L1d, L1i, L2 cache

BSDCon'05, CT-RSA'06, 

ASIACCS'20

Branch Prediction

CT-RSA'07

GPU

S&P'18

Ring Interconnect

USENIX Sec'21, DIMVA'21

LLC attacks

USENIX'14, S&P'15

DRAM

USENIX Sec'16

State of the art today: each component shared by two processes
is a potential micro-architectural side-channel vector



Porting micro-architectural attacks
to the Web
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RQ2a. Which software implementation is vulnerable?

State of the art (more or less)
1. spend too much time reading OpenSSL code
2. find vulnerability
3. exploit it manually using known side channel

→ e.g. CPU cache
4. publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,

CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,

CVE-2020-16150
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RQ2b. How to deliver the attack?

State of the art in 2015
• native code, cross process and cross-VM
• lots of (x86) assembly required



How to obtain such low-level 
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Side-channel attacks in JavaScript?

• side channels are only doing benign operations

• all side-channel attacks: measuring time
• cache attacks: accessing their own memory
• port contention attacks: executing specific instructions
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High-resolution timers?

• measure small timing differences: need a high-resolution timer

• native: rdtsc, timestamp in CPU cycles
• JavaScript: performance.now() has the highest resolution

performance.now()
[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network
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Evolution of timers until today: resolution and countermeasures

2015 2016 2018 2019 2020 2021 2022

SpectreThe spy
in the

sandbox

≤ 43
∼10 ns

44
5 µs

64
100µs
+ jitter

72
5 µs

+ jitter

92
& COOP/COEP:
5 µs + jitter,

SharedArrayBuffer enabled

≤ 40
∼10 ns

41
5 µs

79
& COOP/COEP:

20 µs

60
1ms + jitter

59
2ms

57.0.4
20 µs

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021
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Is clamping an efficient countermeasure?

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchi-
tectural Attacks in JavaScript”. In: FC. 2017

• microsecond resolution is not enough for attacks

• two approaches

1. recover a higher resolution from the available timer
→ clock interpolation, resolution: Firefox/Chrome: 500ns, Tor: 15 µs

2. build our own high-resolution timer
→ using SharedArrayBuffer, resolution: Firefox: 2 ns, Chrome: 15 ns
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Port contention attacks
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Background: Hyper-threading

Simultaneous computation technology of Intel.
• physical cores are shared between logical cores
• abstraction at the OS level

→ hardware resources are shared between logical
cores



21

Background: Hyper-threading

Simultaneous computation technology of Intel.
• physical cores are shared between logical cores
• abstraction at the OS level

→ hardware resources are shared between logical
cores



22

Background: Execution pipeline

• instructions are decomposed in
uops to optimize Out-of-Order
execution

• uops are dispatched to specialized
execution units through CPU ports

• deterministic decomposition of
instructions into uops

Execution Engine

uOps uOps uOps uOps uOps uOps

Thread
0

Thread
1

Decode

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

Scheduler

inst.
fetch

uOps

Memory Subsystem

INT ALU

INT DIV

VEC ALU

AES

VEC STR

FP DIV

BRANCH

VEC MUL

INT ALU

INT MUL

VEC ALU

BIT SCAN

VEC MUL

INT ALU

VEC SHU

VEC ALU

LEA

INT ALU

BRANCH

AGU

LOAD

AGU

LOAD

STORE AGU

uOps

inst.
fetch
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Port contention

No contention

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A A
Execution
engine

All attacker instructions are
executed in a row
→ fast execution time

Contention

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A V A
Execution
engine

Victim instructions delay the
attacker instructions
→ slow execution time

A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.
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Port contention side-channel attack

Victim

secret == 0

POPCNT %r8,%r8
POPCNT %r8,%r8
...
POPCNT %r8,%r8
POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0
...
VPBROADCASTD %xmm0, %ymm0
VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Monitors port usage
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Port contention attacks: Challenges with JavaScript

T. Rokicki et al. “Port Contention Goes Portable: Port Contention Side Channels in Web
Browsers”. In: ASIACCS. 2022

1. No high-resolution
timers

2. No control on cores 3. No access to specific
instructions
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Port contention attacks: Solutions

1. No high-resolution
timers

→ we just solved this
problem

2. No control on cores

→ exploit JavaScript
multi-threading and
work with the scheduler

3. No access to specific
instructions

→ use WebAssembly
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Proof-of-concept native-to-web

4.7 4.75 4.8 4.85 4.9 4.95 5 5.05
0

20
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Execution time (ms)

Pe
rc
en

ta
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rr
en

ce
s Control experiment P1 contention

Native : C code runs TZCNT x86 instructions (P1 uop) on all physical cores
Web : WebAssembly repeatedly calls i64.ctz and times the execution
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Port contention covert channel: native-to-web

• Native: C/x86 sender
• Web: WebAssembly receiver

Evaluation:
• 200 bit/s of effective data (best bandwidth
for a web-based covert channel!)

• stress -m 2: 170 bit/s
• stress -m 3: 25 bit/s

Hardware:
CPU Ports

OS

User applications Receiver
JS sandbox

browser

Sender
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RQ2b. How to deliver the attack?

State of the art in 2015
• native code, cross process and cross-VM
• lots of (x86) assembly required
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RQ2b. How to deliver the attack?

State of the art today: many Web-based micro-architectural attacks



Conclusion
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Conclusions

• first paper by Kocher in 1996: 25 years of research in this area

• domain still in expansion: increasing number of papers published since 2015
• micro-architectural attacks require a:

• low-level understanding of the components → reverse-engineering
• low-level control of the components usually achieved with native code → still
possible to deliver these attacks from web browsers

→ work across all abstraction layers
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Thank you!

Merci !
Contact: 
@BloodyTangerine
clementine.maurice@cnrs.fr
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