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Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations
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Attacker model

Hardware-based attacks Software-based attacks
a.k.a physical attacks a.k.a micro-architectural attacks

Physical access to hardware Co-located or remote attacker
— embedded devices — complex systems
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Skylake

Kaby Lake

Coffee Lake

Whiskey Lake

Comet Lake/Ice Lake
Tiger Lake

Alder Lake/Rocket Lake

Sapphire Rapids

- new micro-architectures yearly
- performance improvement ~ 5%

- very small optimizations: caches, branch

prediction...

- micro-architectural side channels come from

these optimizations

- attacker infers information from a (vulnerable)

victim process via hardware usage



Micro-architectural side-channel attacks: Two faces of the same coin

OO

Implementation 21231e Hardware E

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: b® mod n
X<+1
for i < bitlen(e) downto 0 do
X+ multiply(X,X)
if e; = 1then &
| X+ multiply(x, b)
end
end
return X




Research questions

RQ1. Which hardware components are vulnerable...

...and how to use them to leak data?

RQ2. Which software implementation is vulnerable...

.. and what are the different attack deliveries?
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hardware micro-architectural

components (RQ1) 7



Reverse-engineering
micro-architectural components



RQ1. Which hardware component leaks information?

State of the art (more or less)

1.

spend too much time reading Intel manuals

2. find weird behavior in corner cases
3. exploit it using a known vulnerability
4,

5. goto step 1

publish




RQ1. Which hardware component leaks information?

LLC attacks
Z\USENIX'lA, S&P'15

Lid, L1i, L2 cache Branch Prediction
BSDCon'05, CT-RSA'06, CT-RSA'07

State of the art in 2015:
only the cache and the branch predictor were explored



- performance optimizations are mostly undocumented
- side channels come from these optimizations

— understanding them is crucial to characterize the attack surface: build new
or improve known side-channel primitives
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General approach

Side-channel analysis Reverse engineering
software w/ software w/
input-dependent input-dependent
data- or control-flow data- or control-flow
GoImpemEE execution Knovvn execution
model input
secret component
model

Reverse-engineering is the opposite operation of side-channel analysis
1



RQ1. Which hardware component leaks information?

LLC attacks
Z\USENIX'lA, S&P'15

3

Lid, L1i, L2 cache Branch Prediction
BSDCon'05, CT-RSA'06, CT-RSA'07

State of the art in 2015:
only the cache and the branch predictor were explored



RQ1. Which hardware component leaks information?

CPU Ports
Translation look-aside buffer SS5P'19 J

USENIX Sec'18 < LLC attacks y DRAM
¥ USENIX'14, S&P'15 USENIX Sec'16

L=
; GPU
Lg®” | .
S ‘ V S&P'18
Lid, L1i, L2 cache Branch Prediction
BSDCon'05, CT-RSA'06, CT-RSA'07 Ring Interconnect
ASIACCS'20 USENIX Sec'21, DIMVA'21

State of the art today: each component shared by two processes
is a potential micro-architectural side-channel vector



Porting micro-architectural attacks
to the Web



RQ2a. Which software implementation is vulnerable?

State of the art (more or less)
1. spend too much time reading OpenSSL code
2. find vulnerability

3. exploit it manually using known side channel
— e.g. CPU cache

4. publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,

CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,

CVE-2020-16150
13



RQ2b. How to deliver the attack?

COLIN PERCIVAL

loop:

mov ecx, start_of_buffer
sub length_of buffer, 0x2000
rdtsc

mov esi, eax

xor edi, edi

prefetcht2 [ecx + edi + 0x2800]

add cx, [ecx + edi + 0x0000]
imul ecx, 1
add cx, [ecx + edi + 0x0800]
imul ecx, 1

e e State of the art in 2015

add cx, [ecx + edi + 0x1800]
imul ecx, 1

- native code, cross process and cross-VM

sub eax, esi
mov [ecx + edi], ax

e - lots of (x86) assembly required

add edi, 0x40
test edi, 0x7CO
jnz loop

sub edi, OX7FE
test edi, 0x3E
jnz loop

add edi, 0x7C0
sub length_of_buffer, 0x800
jge loop

FIGURE 1. Example code for a Spy process monitoring 14
the L1 cache.



applications

0S

How to obtain such low-level
control from a high-level
abstraction layer?

hardware
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Measuring time
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High-resolution timers?

- measure small timing differences: need a high-resolution timer
- native: rdtsc, timestamp in CPU cycles

- JavaScript: performance.now( ) has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network
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Evolution of timers until today: resolution and countermeasures

I 2015 2016 2018 2019 2020 2021 2022

19

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021
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Evolution of timers until today: resolution and countermeasures

The spy  Spectre

in the
sandbox oA
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Before September 2015

- performance.now( ) had a nanosecond resolution

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015. 20
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/
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Before September 2015

- performance.now( ) had a nanosecond resolution
- 2015: Oren et al. demonstrated cache side-channel attacks in JavaScript

- countermeasure in Firefox 41 & Chrome 44: clamping to 5 us

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015. 20
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/
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Is clamping an efficient countermeasure?

E M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchi-
tectural Attacks in JavaScript”. In: FC. 2017

- microsecond resolution is not enough for attacks
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Is clamping an efficient countermeasure?

E M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchi-
tectural Attacks in JavaScript”. In: FC. 2017

- microsecond resolution is not enough for attacks
- two approaches

1. recover a higher resolution from the available timer
2. build our own high-resolution timer

21



Recovering resolution: Clock interpolation
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Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

1+ +1 1+ +1 +1T +1 4]

- to measure with high resolution

- start measurement at clock edge
- increment a variable until next clock edge

- Firefox/Chrome: 500 ns, Tor: 15 us

22



Building a timer: Web worker

- feature to share data: SharedArrayBuffer
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Building a timer: Web worker

- feature to share data: SharedArrayBuffer

- web worker can simultaneously read/write data

- N0 message passing overhead

- one dedicated worker for incrementing the shared variable

- Firefox/Fuzzyfox: 2 ns, Chrome: 15ns

23



E T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript

timers in browsers”. In: EuroS&P. 2021

- adding jitter — makes clock interpolation inefficient
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E T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript
timers in browsers”. In: EuroS&P. 2021

- adding jitter — makes clock interpolation inefficient
‘ — has no impact on SharedArrayBuffers!

- browsers are adopting better isolation between websites
(e.g, Site Isolation) to counter transient execution attacks

[
‘ - back to higher timer resolution for usability — side-channel

attacks are possible again!

2%



Port contention attacks



Background: Hyper-threading

Simultaneous computation technology of Intel.

- physical cores are shared between logical cores

- abstraction at the OS level
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Background: Hyper-threading

Simultaneous computation technology of Intel.

- physical cores are shared between logical cores

- abstraction at the OS level

— hardware resources are shared between logical
cores

26



Background: Execution pipeline

- instructions are decomposed in
uops to optimize Out-of-Order
execution L Scheduler J
- uops are dispatched to specialized |
execution units through CPU ports
- deterministic decomposition of EE camerre | | | |
instructions into uops emory Subsysto

27



Port contention

No contention

Attacker
instr Port 1
Execution
Schedulerﬂ . ) engine

Victim

All attacker instructions are
executed in a row
— fast execution time

28
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



Port contention

No contention Contention

Attacker Attacker
instr Port 1 instr Port 1
! | Execution | | execution

vt | vitim e
instr
All attacker instructions are Victim instructions delay the
executed in a row attacker instructions
— fast execution time — slow execution time

28
A. C. Aldaya et al. “Port Contention for Fun and Profit”. In: S&P. 2019.



Port contention side-channel attack

Victim

secret == secret == .

l l Monitors port usage o N N

”~ S\

(&
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmo
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmm@, %ymmoO
POPCNT %r8,%r8 VPBROADCASTD %xmmO, %ymmO
Contention on Port 1 Contention on Port 5

29



Port contention side-channel attack

Victim
secret == 0
Contention on Port 1 7’ -~ 't
POPCNT %r8,%r8
POPCNT %r8,%r8
Secret is 0!

POPCNT %r8,%r8
POPCNT %r8,%r8

29



Port contention side-channel attack

Victim

secret ==

l

VPBROADCASTD %xmm0, %ymmo
VPBROADCASTD %xmm0, %ymmo

VPBROADCASTD %xmm0, %ymmo
VPBROADCASTD %xmm0, %ymmo

. T T
Contention on Port 5 P

@

Secret is 1!

29



Port contention attacks: Challenges with JavaScript

E T. Rokicki et al. “Port Contention Goes Portable: Port Contention Side Channels in Web
Browsers”. In: ASIACCS. 2022

TR
1. No high-resolution 2. No control on cores 3. No access to specific
timers instructions

30



#1. No high-resolution timers

We just solved this problem :)

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC. 2017.

31

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P. 2021.



#2. No control on cores

- JavaScript does not have control on cores

- scheduler tries to balance the workload of
physical cores

1S

with the scheduler o %% %%

— exploit JavaScript multi-threading and work

32



#3. No access to specific instructions

JS

- sandboxed

- JIT compilation

33



#3. No access to specific instructions

- sandboxed - sandboxed

- JIT compilation - compiled from another language

- smaller, more atomic instructions

33



Proof-of-concept native-to-web

7 —1Control experiment —1P1 contention

§ 60 | | | | |

g

=

o 40 i
(@]

Y

o

‘;;” 20 - -
=

g 0 H H = H - i ] H H i H | . -

& 4.7 4.75 4.8 4.85 4.9 4.95 5 5.05

Execution time (ms)

Native : C code runs TZCNT x86 instructions (P1 uop) on all physical cores

Web : WebAssembly repeatedly calls 164.ctz and times the execution 34



Port contention side-channel in WebAssembly

v

o

(]

€ 400 .

(]

u]

&

£ 200 | - spatial resolution: 1024 native instructions
S - similar to other web-based cache attacks
§ 0 IRy - timers are the main bottleneck

< 0 10 20 30 40

Measurements (nbj,sy- = 10)

Figure 1: Secret key: 1101001.
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Port contention covert channel: native-to-web

- Native: C/x86 sender

- Web: WebAssembly receiver a T
User applications Sender E EJSS:SEQ?VH i é
Evaluation:

- 200 bit/s of effective data (best bandwidth
for a web-based covert channel!)

- stress -m 2:170bit/s ol rone

- stress -m 3:25bit/s

36



More port contention covert channels

VM-to-host Cross-browser
........... Vorowser 777777 forowser -~ 7777
'Virtual machine 1+ +JS sandbox 2 8 ' 15 sandbox 0
User applications i [Sender] Receiver User applications | | [Sender] :

0s 0os
Hardware: Hardware:
CPU Ports CPU Ports

80 bit/s bandwidth 200 bit/s bandwidth (physical
layer), across different browsers! 37



RQ2b. How to deliver the attack?

COLIN PERCIVAL

loop:

mov ecx, start_of_buffer
sub length_of buffer, 0x2000
rdtsc

mov esi, eax

xor edi, edi

prefetcht2 [ecx + edi + 0x2800]

add cx, [ecx + edi + 0x0000]
imul ecx, 1
add cx, [ecx + edi + 0x0800]
imul ecx, 1

e e State of the art in 2015

add cx, [ecx + edi + 0x1800]
imul ecx, 1

- native code, cross process and cross-VM

sub eax, esi
mov [ecx + edi], ax

e - lots of (x86) assembly required

add edi, 0x40
test edi, 0x7CO
jnz loop

sub edi, OX7FE
test edi, 0x3E
jnz loop

add edi, 0x7C0
sub length_of_buffer, 0x800
jge loop

FIGURE 1. Example code for a Spy process monitoring 38
the L1 cache.



RQ2b. How to deliver the attack?

State of the art today: many Web-based micro-architectural attacks
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Conclusions

- first paper by Kocher in 1996: 25 years of research in this area
- domain still in expansion: increasing number of papers published since 2015
- micro-architectural attacks require a:

- low-level understanding of the components — reverse-engineering

- low-level control of the components usually achieved with native code — still
possible to deliver these attacks from web browsers

— work across all abstraction layers

39



Thank you!

Contact

¥ clementine.mauricegcnrs.fr
¥ @BloodyTangerine
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