Reproducible Research:
from Paper to Artifact Evaluation

Clémentine Maurice, CNRS
@BloodyTangerine

EuroSec 2022 keynote - April 5, 2022

Who am |

— Researcher at CNRS since 2017, currently working at the CRIStAL lab in Lille, France
— Research in micro-architectural security

— Co-chaired multiple Artifact Evaluations
o USENIX WOOT"19: first artifact evaluation of the workshop
o USENIX Security'21 & 22: three cycles each, one last cycle to go for 22
> 6 cycles of artifact evaluation as of today

> credit also goes to my co-chairs Alex Gantman, Thorsten Holz, and Cristiano Giuffrida

Outline

1. Reproducible research: wouldn't it be great?

2. (Personnal) struggles reproducing micro-architectural security

research

3. Artifact Evaluation: a new hope?

Reproducible research:
wouldn't it be great?

Imagine..

— The year is 2022, you want to compare your method to state of the art. Authors have
open-sourced their code, you compile it, run it, and obtain numbers that you can compare
your work with.

Imagine..

— The year is 2022, you want to compare your method to state of the art. Authors have
open-sourced their code, you compile it, run it, and obtain numbers that you can compare
your work with.

— This is (almost) science fiction.

Beyond papers: artifacts

— A paper is not just a paper, it is also a lot of data, code, benchmarks...

— Problem: it's actually not trivial to run code in different setups

(Personnal) struggles reproducing
micro-architectural security research

Micro-architectural security

(@ Viemory Pipsiine ||
=] (o 5]

@) Outof-Order Engine

11101111010001001 11010001 1 100001 1

Hardware usually considered as an abstract layer, but possible attacks:

— Fault attacks: causing hardware errors to bypass protections
— Side channel attacks: observing side effects of hardware on software execution

Full-software attacks which do not require physical access to hardware

1

Two sides of the same coin

Software implementation

Algorithm 1: Square-and-multiply exponentiation

Hardware

Input: base b, exponent e, modulus n
Output: b® mod n
X1
for i < bitlen(e) downto 0 do

X + multiply(X, X)

if e, = 1then

| X« multiply(x, b)

end
end
return X

@ Front-end i (3 Memory Pipeline || (@ Out-of-Order Engine
Tnstruction H LiiCache [| [L2 Cache
Predecode & Fetch 32k |55 256 kiB
(16 bytes) .
Execution Units

6 M0Ps

CocheTogs

Branch

prediction | | iaadar.| Lo Buter
unit_| | ‘ G2enmes)
[eturn Stack [Store & Forward Buffer |
suter sores
s enres)
G
sranchel| Baneh O Buter
e enes)

‘System Agent

Display
Controller

‘Memory
Controller

Retirement Unit

HOP Scheduler
Unified Reservation Station (97 entries)

¥ vorcaca) (8 e
g Q24 enves)
e v l

\ Multiplexer /

SiappY.

e || s | .
st | |
e lilepoesl =
s e e

10

Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?

11

Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?

12

Reproducing p-arch research

— 2015: toward the end of my PhD, | want to reproduce a paper on arXiv on L3 Prime+Probe
— No code but I've been working on cache attacks already and | am confident | can reproduce it

— It does not work and I have no idea why

13

Reproducing p-arch research

— 2015: toward the end of my PhD, | want to reproduce a paper on arXiv on L3 Prime+Probe
— No code but I've been working on cache attacks already and | am confident | can reproduce it

— It does not work and I have no idea why

Why is it so complicated?

14

Standards back then

— If the paper says it runs on two different CPUs that are somewhat recent, we're good!
— General sentiment: running code on 2+ machines is “just engineering”, so we don't care

— Thankfully, it improved since then!

15

Part I: The Good

a.k.a.
Problems | don't have

| am a minimalist

| don't need:

— fancy clusters
— many cores
— alot of memory

Most of my experiments can run on my own laptop

17

Software portability

| don't (normally) use fancy features that may change from one OS version to the other, or write
code that relies on libraries that will break when updated

- Software portability is (mostly) fine

18

People running their experiments on clusters be like

19

Part Il: The Bad

a.k.a.
Problems | have | can live with

Constraints: sharing is not caring

— No VM - messes with timing
— No sharing the hardware - would pollute the cache/other micro-architectural component

— That's the real reason | typically don’t use fancy clusters

21

Part lll: The Ugly

a.k.a.
Problems that have kept me up

many a hight

My actual nightmares

— Any change in the micro-architecture

!

If it is the same generation, there might be changes in the number of cores, in the size of the
caches, associativity...
o notthe end of the world, but requires to have generic code

o truly engineering: usually okay for your own code, less so if you have code from somebody else with
magic values...

— Roughly one new generation per year, and changes can be quite big
o that part is the biggest issue

23

Let's get back to Prime+Probe

Set associative caches

Address

way 0

Tag

Index Of set

way 3

Cache set

\

—~

Cache line —————

Cache

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy

25

Caches on Intel CPUs

« L1and L2 are private
ring bus + last-level cache

J « divided in slices

« shared across cores

core 0 core 1 core 2 core 3
[[I I
L1 L L1 (K|
I I I I
2 |2 L2 L2
| | I |
| | | |
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

* inclusive

26

Prime+Probe

—

Victim address space

Cache

Attacker address space

27

Prime+Probe

- e

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)

28

Prime+Probe

loads data

—

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

29

Prime+Probe

loads data

S— -

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

30

Prime+Probe

iﬁ:i

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
31

Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
32

Prime+Probe in practice

Evicting caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)

33

L3 addressing (before Sandy Bridge)

35

17

0

physical address tag set offset
11
\ 4
>/|A_|
line —]
slice 0 slice 1 slice 2 slice 3

-

n tag bits are used to address

the slice

34

L3 addressing (after Sandy Bridge)

35 17 6 0
physical address tag set offset

30

> [

/

slice 0 slice 1 slice 2 slice 3

line —

complex addressing function is

used to address the slice

takes as input bits of the set

index and tag

undocumented hash function

35

Eviction sets on Sandy Bridge and following

35

17

line —

physical address tag set offset
30
2
?
A 4 Y Y Y
[
slice 0 slice 1 slice 2 slice 3

36

Long story short... here are the functions

3 functions, depending on the number of cores

Address bit

3131313333222 |22|2(2|2(|2|2|1T[1T]1T(1]1[1 1 1 0
716(5|4(3|2(1]0|9(8|7|6|5[4|3|2[1|]0[9|8(7|6|5]|4 2 0 6
[2coresfoo|[| | | [[e] [o] [e|e[e[e[e]| [o] [e¢] [e|e[e] [o] [e] |e B
4 cores 0o [CREC] ® D D D | DD ® ® [CRECHEC] ® ® ® ©]

01 [CHES] ® [CHEC) ® CHECRECHECHECENC] ® €]
0o [CHES) [CHEC) ® [CHECRECHECHES] ® ® [CRECERC] ® ® ® ®

8cores| o1 ||® DD | D (©] DD ® D D D | D | D |D @® (€]

[PRIERECRECRES] [CRES] ®|® CHES] ® ® ©]

C. Maurice et al., Reverse Engineering Intel Last-Level Cache Complex Addressing Using Performance Counters. RAID 2015

37

Reproducing results on
another machine might be a
scientific contribution

(and a top tier paper)

38

Artifact Evaluation: a new hope?

Artifact Evaluation

— Problem: it's actually not trivial to run code in different setups

— Solution? Artifact Evaluations!
o Agroup of (really patient) people will evaluate the artifact submitted after acceptance of the paper

o Ifthey can reproduce the results: the paper gets a badge

40

Artifact Evaluation is awesome

— Improving science: ideally everybody could replicate the results to have a higher confidence
on the paper, build on it, and compare it with related (passed or future) work

— Artifact Evaluation is relatively new in security (compared to, e.g., software engineering), but
everybody agrees that it is awesome

41

People are very happy about it!

Vijay Chidambaram (@vj_chidambaram - 15 janv.

Papers introducing tools, benchmarks, or solutions to known problems need
to pass Artifact Evaluation to be accepted at (@jsysresearch. Every paper
should have an artifact we can run, and build on!

Dave Levin @DistributedDave - 13 aout 2020
For the first time, the @ ACMSIGCOMM conference did artifact evaluation!

Very happy to see the community adopt this. The badges are listed in the

program; | hope it encourages more authors to make their artifacts available.

conferences.sigcomm.org/sigcomm/2020/p.

7 1like very much the introduction of artifact evaluation in systems paper!
Very helpful for the systems community! #0sdi20

@’"’: Jack Kolokasis (@.JackKolokasis - 6 nov. 2020

S

Christopher Patton (@cjpatton_ - 12 janv.
#CHES is going to start doing artifact evaluation! Excellent!
#realworldcrypto

Mathias Payer @gannimo - 22 nov. 2019

For HALucinator, our firmware analysis framework, we're working with the
(@USENIXSecurity artifact evaluation committee. Let me just say that those
folks are doing an amazing job! -+

42

Artifact Evaluation process (wooT & USENIX Security until ‘22)

“Does the artifact conform to the expectations set by the paper?”

— Authors can submit artifacts after acceptance of their paper -- optional process
o They submit: the accepted paper, bidding instructions + sw/hw requirements, and the artifact itself

— AEC members bid on artifacts (so far nobody had more than 1 artifact each session)

— Discussion phase between AEC members and authors: ~12 days
o AEC members are fantastic, this is quite short and makes for an intense phase

— Review phase -- AEC members now have a good idea whether the artifact passed or not: ~ 2 days
— If the paper passed the Artifact Evaluation, the authors add a badge before camera ready

ARTIFACT
EVALUATED
usenix

PASSED

43

Artifact quality

armract | = the artifact conforms to the expectations set by the paper

EVALUATED

— says more about the paper than the artifact, very variable artifact quality

PASSED

44

Improving artifact quality

Feedback from WOOT ‘19 AEC members from what helped or would have helped them:

1.

Good documentation
Providing a step-by-step running example or automated test cases
Packaging: VM, docker... anything that avoids Dependency Hell

(Providing access to a remote machine)

SUPPORTS THNGS T ACTUALLY
WANT T USE My

EVERY NOW AND THEN T. REALIZE TM MAINTAINING A
HUGE. CHAIN OF TECHNOLOGY SOLELY T SUPPORT ITSELE

https://xkecd.com/1579/

45

Artifact Evaluation is a lot of work

Time spent evaluating artifacts (10 respondents)
W 1to2days [l 2to4days

B 12day W 12to1day

0%

25%

50%

Respondents

75%

100%

Feedback from WOOT “19 AEC
— Median time: 1 day, up to 4 days

— Requires to be very reactive

— Important point: the evaluation is not
adversarial! AEC members want to make it

work!

All the kudos to AEC members!

46

Artifact sharing in the security community

W Arifacts accepted W Artifacts rejected © No artifact submission - 20% to 30% of accepted papers

participated to the Artifact Evaluation

WOO0T"19

L — That's way less than system conferences!
84% of OSDI ‘21 accepted papers

participated to AE

USENIX Sec 20
(40 out of 157 papers)

USENIX Sec 21

(37 out of 248 papers) — No big trend in terms of artifact sharing

between workshops and bigger

ACSAC 20
(31 out of 70 papers) co nfe rences
ACSAC 21 . .
(22 out of 80 papers) — Most submitted artifacts are accepted,

most of them are code
0% 25% 50% 75% 100%

Caveat of these numbers: only reflect papers gone through the formal evaluation process, not informal sharing

47

Motivators (1/3)

We collectively agree that Artifact Evaluation Is Awesome, yet less than 30% of papers have an
artifact: what can we do?

, o . _~ — We have limited time and there
En réponse a @matteodellamico et @JethroGB

Again, | guess that's "no strong incentives” in doing that. Preparing arevery little incentives
code/dataset to be shared with referees takes time, but that has not been

rewarded much. BUT: the artifact eval thing is a GREAT step forward, so I'm

quite positive about this aspect for long term

& Yanick Fratantonio 7* @reyammer - 4 oct. 2020

48

Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”

49

Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”

STICKERS! Everybody loves stickers!

\ Konrad Rieck @mlsec - 17 juil. 2019
:, En réponse a @thorstenholz et @USENIXSecurity
Will we get a sticker? That would be great.

50

Motivators: long term solutions (3/3)

— The immense majority of researchers want to do impactful work: intrinsic motivation

— More powerful incentives would not hurt, but we need to rethink how we evaluate research
o Is“number of accepted papers” a good metric? (no, but we already knew that)
o Can Artifact Evaluations be taken into account in hiring committees, tenure track committees?

o Agood start: in our regular evaluations, my employer (CNRS) asks about software production

51

A few hurdles we experienced

— Tight timeline that has been retrofitted to fit AE, e.g., shepherding and AE at the same time

— Complicated to fix hard and fast rules for all artifacts due to the diversity
o |feel like we run into one or more unexpected questions each AE session

— Sometimes only a part of the paper has a corresponding artifact (for various reasons)
o Not ideal, but we asked the authors to clarify this in their paper for camera ready

52

Changes at USENIX Security ‘22

1. More badges!

More complete badges by USENIX (ACM has equivalent badges), already used at OSDI

ARTIFACT . . ARTIFACT ARTIFACT .
EVALUATED available for retrleval, EVALUATED docu mented, EVALUATED Independently

2 SEn permanently and e completeness, S repeatable
publicly successfully executed experiments

FUNCTIONAL REPRODUCED

AVAILABLE

53

Changes at USENIX Security ‘22

2. More time!

— Past Artifact Evaluations were performed between
notification and camera ready

— Pro: badges can be added to the final paper

— Cons: only leaves around two weeks of actual evaluation
and very little time for shepherding

— We are now starting the evaluation after camera ready!

54

Changes at USENIX Security ‘22

3. Unified appendix!

@ Hernan Ponce De Leon - Standard Appendix documenting the
@h_poncedeleon . . .
program, dependencies, installation, usage,
Done with the artifact evaluation of @PLDI and expected results...
@USENIXSecurity ... | really like the appendix template
from the later where authors explicitly state the time it — Goals: relate claims of the paper to the
takes to run each experiment and the expected results . . .
i artifact, make it easier to reuse (and to
4:03 PM - 19 mars 2022 - Twitter for Android reVIeW!)

https://www.usenix.org/conference/usenixsecurity22/artifact-appendix-guidelines

Challenges (1/n)

What about hardware?

Brendan Dolan-Gavitt
@moyix

Slightly frustrating thing about embedded research is
the hardware platforms used in past evaluations
become completely unobtainable. Good luck finding an
Econotag in 2021 :\

Traduire le Tweet

5:57 PM - 15 févr. 2021 - Twitter Web App

Hardware requirements can be problematic
for the evaluation

Hardware availability will be an issue in a
few years

56

Challenges (2/n)

Actually... what about software?

“ David Brumley
he. (@thedavidbrumley

.

En réponse a @thorstenholz et @USENIXSecurity

Artifacts in theory are great. | do have an issue with
maintaining them. Getting asked 10 years later about
code you barely remember written by a grad student
long gone is hard. And funding doesn't cover sysadmin
work needed for backups and access. Please set an
expiry date.

Traduire le Tweet

6:11 PM - 17 juil. 2019 - Twitter Web Client

Authors can package beautifully their artifacts
to help with software requirements

But code probably won’t be maintained forever

Artifact Evaluation probably has a timestamp

57

Challenges (3/n)

Licensing can get in the way of the evaluation

Brendan Dolan-Gavitt
o' @moyix

Artifact eval question: is it kosher to include SPEC2006
in your artifact package?

Traduire le Tweet

6:30 PM - 23 aoat 2020 - Twitter Web App

— Some artifacts may include proprietary
code, e.g., SPEC CPU benchmarks are
only available for purchase

58

Challenges (4/n)

It would be great for Artifact Evaluation to happen during reviews instead of after acceptance

" Hernan Ponce De Leon

@ @h_poncedeleon - Where tO ﬁnd the Workforce?

En réponse a @vj_chidambaram @jsysresearch et @eeide

— ACSAC has opened AE after round 1 of

That's the way to go! | hope conferences follow the lead . . .
- P reviews to help decide borderline papers

and make use of the Artifact Evaluation as an input for

acceptance decision . .
B — CCS s strongly encouraging authors to

5:15 PM - 15 janv. 2021 - Twitter for Android prOVIde artlfaCtS bUt WIthOUt an AE

59

https://secartifacts.github.io/

Is live!

Thanks to Anjo Vahldiek-Oberwagner,
Cristiano Giuffrida, Thorsten Holz!

Thank you!

