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Who am |

—  Researcher at CNRS since 2017, currently working at the CRIStAL lab in Lille, France
—  Research in micro-architectural security

—  Co-chaired multiple Artifact Evaluations
o  USENIX WOOT"19: first artifact evaluation of the workshop
o USENIX Security'21 & 22: three cycles each, one last cycle to go for 22
> 6 cycles of artifact evaluation as of today

> credit also goes to my co-chairs Alex Gantman, Thorsten Holz, and Cristiano Giuffrida



Outline

1. Reproducible research: wouldn't it be great?

2. (Personnal) struggles reproducing micro-architectural security

research

3. Artifact Evaluation: a new hope?



Reproducible research:
wouldn't it be great?



Imagine..

— The year is 2022, you want to compare your method to state of the art. Authors have
open-sourced their code, you compile it, run it, and obtain numbers that you can compare
your work with.



Imagine..

— The year is 2022, you want to compare your method to state of the art. Authors have
open-sourced their code, you compile it, run it, and obtain numbers that you can compare
your work with.

—  This is (almost) science fiction.



Beyond papers: artifacts

— A paper is not just a paper, it is also a lot of data, code, benchmarks...

—  Problem: it's actually not trivial to run code in different setups



(Personnal) struggles reproducing
micro-architectural security research



Micro-architectural security
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Hardware usually considered as an abstract layer, but possible attacks:

—  Fault attacks: causing hardware errors to bypass protections
—  Side channel attacks: observing side effects of hardware on software execution

Full-software attacks which do not require physical access to hardware
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Two sides of the same coin

Software implementation

Algorithm 1: Square-and-multiply exponentiation

Hardware

Input: base b, exponent e, modulus n
Output: b® mod n
X1
for i < bitlen(e) downto 0 do

X + multiply(X, X)

if e, = 1then

| X« multiply(x, b)

end
end
return X
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Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?
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Research questions

1. Which software implementations are vulnerable?

2. Which hardware components leak information?
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Reproducing p-arch research

—  2015: toward the end of my PhD, | want to reproduce a paper on arXiv on L3 Prime+Probe
—  No code but I've been working on cache attacks already and | am confident | can reproduce it

— It does not work and I have no idea why
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Reproducing p-arch research

—  2015: toward the end of my PhD, | want to reproduce a paper on arXiv on L3 Prime+Probe
—  No code but I've been working on cache attacks already and | am confident | can reproduce it

— It does not work and I have no idea why

Why is it so complicated?

14



Standards back then

— If the paper says it runs on two different CPUs that are somewhat recent, we're good!
— General sentiment: running code on 2+ machines is “just engineering”, so we don't care

—  Thankfully, it improved since then!
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Part I: The Good

a.k.a.
Problems | don't have



| am a minimalist

| don't need:

—  fancy clusters
—  many cores
— alot of memory

Most of my experiments can run on my own laptop
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Software portability

| don't (normally) use fancy features that may change from one OS version to the other, or write
code that relies on libraries that will break when updated

- Software portability is (mostly) fine
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People running their experiments on clusters be like
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Part Il: The Bad

a.k.a.
Problems | have | can live with



Constraints: sharing is not caring

—  No VM - messes with timing
—  No sharing the hardware - would pollute the cache/other micro-architectural component

— That's the real reason | typically don’t use fancy clusters
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Part lll: The Ugly

a.k.a.
Problems that have kept me up

many a hight



My actual nightmares

—  Any change in the micro-architecture

!

If it is the same generation, there might be changes in the number of cores, in the size of the
caches, associativity...
o  notthe end of the world, but requires to have generic code

o  truly engineering: usually okay for your own code, less so if you have code from somebody else with
magic values...

—  Roughly one new generation per year, and changes can be quite big
o  that part is the biggest issue
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Let's get back to Prime+Probe



Set associative caches

Address

way 0

Tag

Index Of set

way 3

Cache set

\

—~

Cache line —————

Cache

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
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Caches on Intel CPUs

« L1and L2 are private
ring bus + last-level cache

J « divided in slices

« shared across cores

core 0 core 1 core 2 core 3
[ [ I I
L1 L L1 (K|
I I I I
2 |2 L2 L2
| | I |
| | | |
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

* inclusive
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Prime+Probe

—

Victim address space

Cache

Attacker address space
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Prime+Probe

- e

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)
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Prime+Probe

loads data

—

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running
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Prime+Probe

loads data

S— -

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)

Step 2: Victim evicts cache lines while running
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Prime+Probe

iﬁ:i

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., f lls, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Prime+Probe in practice

Evicting caches lines without clflush or shared memory:

1.  which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)
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L3 addressing (before Sandy Bridge)

35
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L3 addressing (after Sandy Bridge)

35 17 6 0
physical address tag set offset

30

> [

/

slice 0 slice 1 slice 2 slice 3

line —

complex addressing function is

used to address the slice

takes as input bits of the set

index and tag

undocumented hash function
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Eviction sets on Sandy Bridge and following
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Long story short... here are the functions

3 functions, depending on the number of cores

Address bit
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C. Maurice et al., Reverse Engineering Intel Last-Level Cache Complex Addressing Using Performance Counters. RAID 2015
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Reproducing results on
another machine might be a
scientific contribution

(and a top tier paper)
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Artifact Evaluation: a new hope?



Artifact Evaluation

—  Problem: it's actually not trivial to run code in different setups

—  Solution? Artifact Evaluations!
o Agroup of (really patient) people will evaluate the artifact submitted after acceptance of the paper

o Ifthey can reproduce the results: the paper gets a badge
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Artifact Evaluation is awesome

—  Improving science: ideally everybody could replicate the results to have a higher confidence
on the paper, build on it, and compare it with related (passed or future) work

—  Artifact Evaluation is relatively new in security (compared to, e.g., software engineering), but
everybody agrees that it is awesome
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People are very happy about it!

Vijay Chidambaram (@vj_chidambaram - 15 janv.

Papers introducing tools, benchmarks, or solutions to known problems need
to pass Artifact Evaluation to be accepted at (@jsysresearch. Every paper
should have an artifact we can run, and build on!

Dave Levin @DistributedDave - 13 aout 2020
For the first time, the @ ACMSIGCOMM conference did artifact evaluation!

Very happy to see the community adopt this. The badges are listed in the

program; | hope it encourages more authors to make their artifacts available.

conferences.sigcomm.org/sigcomm/2020/p.

7 1like very much the introduction of artifact evaluation in systems paper!
Very helpful for the systems community! #0sdi20

@’"’: Jack Kolokasis (@.JackKolokasis - 6 nov. 2020

S

Christopher Patton (@cjpatton_ - 12 janv.
#CHES is going to start doing artifact evaluation! Excellent!
#realworldcrypto

Mathias Payer @gannimo - 22 nov. 2019

For HALucinator, our firmware analysis framework, we're working with the
(@USENIXSecurity artifact evaluation committee. Let me just say that those
folks are doing an amazing job! -+
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Artifact Evaluation process (wooT & USENIX Security until ‘22)

“Does the artifact conform to the expectations set by the paper?”

—  Authors can submit artifacts after acceptance of their paper -- optional process
o They submit: the accepted paper, bidding instructions + sw/hw requirements, and the artifact itself

—  AEC members bid on artifacts (so far nobody had more than 1 artifact each session)

—  Discussion phase between AEC members and authors: ~12 days
o  AEC members are fantastic, this is quite short and makes for an intense phase

—  Review phase -- AEC members now have a good idea whether the artifact passed or not: ~ 2 days
—  If the paper passed the Artifact Evaluation, the authors add a badge before camera ready

ARTIFACT
EVALUATED
usenix

PASSED
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Artifact quality

armract | = the artifact conforms to the expectations set by the paper

EVALUATED

— says more about the paper than the artifact, very variable artifact quality

PASSED
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Improving artifact quality

Feedback from WOOT ‘19 AEC members from what helped or would have helped them:

1.

Good documentation
Providing a step-by-step running example or automated test cases
Packaging: VM, docker... anything that avoids Dependency Hell

(Providing access to a remote machine)

SUPPORTS THNGS T ACTUALLY
WANT T USE My

EVERY NOW AND THEN T. REALIZE TM MAINTAINING A
HUGE. CHAIN OF TECHNOLOGY SOLELY T SUPPORT ITSELE

https://xkecd.com/1579/
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Artifact Evaluation is a lot of work

Time spent evaluating artifacts (10 respondents)
W 1to2days [l 2to4days

B 12day W 12to1day

0%

25%

50%

Respondents

75%

100%

Feedback from WOOT “19 AEC
—  Median time: 1 day, up to 4 days

—  Requires to be very reactive

— Important point: the evaluation is not
adversarial! AEC members want to make it

work!

All the kudos to AEC members!
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Artifact sharing in the security community

W Arifacts accepted W Artifacts rejected  © No artifact submission - 20% to 30% of accepted papers

participated to the Artifact Evaluation

WOO0T"19

L —  That's way less than system conferences!
84% of OSDI ‘21 accepted papers

participated to AE

USENIX Sec 20
(40 out of 157 papers)

USENIX Sec 21

(37 out of 248 papers) —  No big trend in terms of artifact sharing

between workshops and bigger

ACSAC 20
(31 out of 70 papers) co nfe rences
ACSAC 21 . .
(22 out of 80 papers) —  Most submitted artifacts are accepted,

most of them are code
0% 25% 50% 75% 100%

Caveat of these numbers: only reflect papers gone through the formal evaluation process, not informal sharing
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Motivators (1/3)

We collectively agree that Artifact Evaluation Is Awesome, yet less than 30% of papers have an
artifact: what can we do?

, o . _~ —  We have limited time and there
En réponse a @matteodellamico et @JethroGB

Again, | guess that's "no strong incentives” in doing that. Preparing arevery little incentives
code/dataset to be shared with referees takes time, but that has not been

rewarded much. BUT: the artifact eval thing is a GREAT step forward, so I'm

quite positive about this aspect for long term

& Yanick Fratantonio 7* @reyammer - 4 oct. 2020
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Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”
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Motivators: short term solutions (2/3)

A very prosaic answer: “appealing to our inner first graders”

STICKERS! Everybody loves stickers!

\ Konrad Rieck @mlsec - 17 juil. 2019
:, En réponse a @thorstenholz et @USENIXSecurity
Will we get a sticker? That would be great.
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Motivators: long term solutions (3/3)

— The immense majority of researchers want to do impactful work: intrinsic motivation

—  More powerful incentives would not hurt, but we need to rethink how we evaluate research
o Is“number of accepted papers” a good metric? (no, but we already knew that)
o  Can Artifact Evaluations be taken into account in hiring committees, tenure track committees?

o Agood start: in our regular evaluations, my employer (CNRS) asks about software production
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A few hurdles we experienced

—  Tight timeline that has been retrofitted to fit AE, e.g., shepherding and AE at the same time

—  Complicated to fix hard and fast rules for all artifacts due to the diversity
o |feel like we run into one or more unexpected questions each AE session

—  Sometimes only a part of the paper has a corresponding artifact (for various reasons)
o  Not ideal, but we asked the authors to clarify this in their paper for camera ready
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Changes at USENIX Security ‘22

1. More badges!

More complete badges by USENIX (ACM has equivalent badges), already used at OSDI

ARTIFACT . . ARTIFACT ARTIFACT .
EVALUATED available for retrleval, EVALUATED docu mented, EVALUATED Independently

2 SEn permanently and e completeness, S repeatable
publicly successfully executed experiments

FUNCTIONAL REPRODUCED

AVAILABLE
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Changes at USENIX Security ‘22

2. More time!

—  Past Artifact Evaluations were performed between
notification and camera ready

—  Pro: badges can be added to the final paper

—  Cons: only leaves around two weeks of actual evaluation
and very little time for shepherding

— We are now starting the evaluation after camera ready!
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Changes at USENIX Security ‘22

3. Unified appendix!

@ Hernan Ponce De Leon - Standard Appendix documenting the
@h_poncedeleon . . .
program, dependencies, installation, usage,
Done with the artifact evaluation of @PLDI and expected results...
@USENIXSecurity ... | really like the appendix template
from the later where authors explicitly state the time it —  Goals: relate claims of the paper to the
takes to run each experiment and the expected results . . .
i artifact, make it easier to reuse (and to
4:03 PM - 19 mars 2022 - Twitter for Android reVIeW!)

https://www.usenix.org/conference/usenixsecurity22/artifact-appendix-guidelines



Challenges (1/n)

What about hardware?

Brendan Dolan-Gavitt
@moyix

Slightly frustrating thing about embedded research is
the hardware platforms used in past evaluations
become completely unobtainable. Good luck finding an
Econotag in 2021 :\

Traduire le Tweet

5:57 PM - 15 févr. 2021 - Twitter Web App

Hardware requirements can be problematic
for the evaluation

Hardware availability will be an issue in a
few years
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Challenges (2/n)

Actually... what about software?

“ David Brumley
he. (@thedavidbrumley

.

En réponse a @thorstenholz et @USENIXSecurity

Artifacts in theory are great. | do have an issue with
maintaining them. Getting asked 10 years later about
code you barely remember written by a grad student
long gone is hard. And funding doesn't cover sysadmin
work needed for backups and access. Please set an
expiry date.

Traduire le Tweet

6:11 PM - 17 juil. 2019 - Twitter Web Client

Authors can package beautifully their artifacts
to help with software requirements

But code probably won’t be maintained forever

Artifact Evaluation probably has a timestamp
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Challenges (3/n)

Licensing can get in the way of the evaluation

Brendan Dolan-Gavitt
o' @moyix

Artifact eval question: is it kosher to include SPEC2006
in your artifact package?

Traduire le Tweet

6:30 PM - 23 aoat 2020 - Twitter Web App

—  Some artifacts may include proprietary
code, e.g., SPEC CPU benchmarks are
only available for purchase
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Challenges (4/n)

It would be great for Artifact Evaluation to happen during reviews instead of after acceptance

" Hernan Ponce De Leon

@ @h_poncedeleon - Where tO ﬁnd the Workforce?

En réponse a @vj_chidambaram @jsysresearch et @eeide

—  ACSAC has opened AE after round 1 of

That's the way to go! | hope conferences follow the lead . . .
- P reviews to help decide borderline papers

and make use of the Artifact Evaluation as an input for

acceptance decision . .
B —  CCS s strongly encouraging authors to

5:15 PM - 15 janv. 2021 - Twitter for Android prOVIde artlfaCtS bUt WIthOUt an AE
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https://secartifacts.github.io/

Is live!

Thanks to Anjo Vahldiek-Oberwagner,
Cristiano Giuffrida, Thorsten Holz!



Thank you!



