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Attacks on micro-architecture

Number of accesses

« hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
« faults: bypassing software protections by causing hardware errors
« side channels: observing side effects of hardware on computations
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Attacker model

Hardware-based attacks Software-based attacks
a.k.a physical attacks a.k.a micro-architectural attacks

Physical access to hardware Co-located or remote attacker
— embedded devices — complex systems
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From small optimizations...

2011 @ Sandy Bridge

2012 @ vy Bridge

2013 @ Haswell

2014 @ Broadwell + new microarchitectures yearly

2015 @ Skylake « performance improvement ~ 5%

2016 @ Kaby Lake - very small optimizations: caches, branch
2017 @ Coffee Lake prediction...

2018 @ Whiskey Lake

2019 @ Comet Lake/lce Lake

2020 @ Tiger Lake
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... To microarchitectural side-channel attacks

 microarchitectural side channels come from these optimizations

« several processes are sharing microarchitectural components

- attacker infers information from a (vulnerable) victim process via hardware
usage

- pure-software attacks by unprivileged processes

« sequences of benign-looking actions — hard to detect
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Micro-architectural attacks: Two faces of the same coin

OJii0

Implementation 32l Hardware

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: b® mod n
X<+ 1
for i + bitlen(e) downto 0 do
X« multiply(X, X)
if e, = 1then &
‘ X+ multiply(X, b)
end
end
return X




Research questions

1. Which software implementation is vulnerable?

2. Which hardware component is vulnerable?



1. Which software implementation is vulnerable?

State of the art (more or less)
1. Spend too much time reading OpenSSL code
2. Find vulnerability

3. Exploit it manually using known side channel
— e.g. CPU cache

4. Publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438,

CVE-2018-0495, CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628,

CVE-2019-13629, CVE-2020-16150
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2. Which hardware component leaks information?

State of the art (more or less)
1. Spend too much time reading Intel manuals

. Find weird behavior in corner cases

2

3. Exploit it
4. Publish

5. goto step 1

1"



From theoretical to practical cache attacks

« first theoretical attack in 1996 by Kocher
- first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik

et al.
- renewed interest for the field in 2014 after Flush+Reload by Yarom and

Falkner

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
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Hyper-threading: Same-core attacks

- threads sharing one core share resources: L1, L2 cache, branch predictor

[ 32K L1 Instruction Cache pi~[Pre-decode p»{Instr Queue
Decoders
Branch Predictor
1.5K uOP Cache
Load Store Reorder ’7
Buffers Buffers Buffers Allocate/Rename/Retire
In-order
*********************** outc atﬁde?
[ Scheduler
[Port0O | [Port1 | [Port5 | [Port2 | [Port3 | \Port4
AW ALU [Load ]
[V-Mu_]| [V-Add StAddr | [ StAddr |
[Veshuffig | V-Shuf zss FP Shuf
Fdiv [ 256- FP Add | [ 256- FP Bool |
256- FPMUL 256 FP Blen
256- FP Blend Memury Control
48 bytes/cycle

Line Fill
=l 256K L2 Cache (Unified) Butfers
< . 32K L1 Data Cache

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality
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Easy solution #1

Possible side channels using

components shared by a core?
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Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!
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Caches on Intel CPUs

core 0 core1 core 2 core3
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Caches on Intel CPUs
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Caches on Intel CPUs

e — - —
[ [ [ [
‘ LI‘ ‘ ‘ L; ‘ ‘ L; ‘ ‘ LI‘ ‘ * L1and L2 are private
I - last-level cache
‘ ‘ ‘ ‘ ./ « divided in slices
: : : : « shared across cores
LLC LLC LLC LLC : InCI-USIVe
slice o slice 1 slice 2 slice 3
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Set-associative caches
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Set-associative caches

o 1617 2526 3

Address ndex ‘ P ‘
way O way 3
Cache set
~ .
A
cache line ——————+f
Cache

Data loaded in a specific set depending on its address
Several ways per set

Cache line loaded in a specific way depending on the replacement policy
16



Cache attacks
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Cache attacks

+ caches improve performance

« SRAM is expensive — small caches
« different timings for memory accesses

1. data is cached — cache hit — fast
2. data is not cached — cache miss — slow

- cache attacks leverage this timing difference

17






Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

19



Cache attacks: Flush+Reload

T —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

19



Cache attacks: Flush+Reload

Aushes

T —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

19
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Cache attacks: Flush+Reload

reloads data
Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

Step 4: Attacker reloads the data 19



Flush+Reload: Applications

« cross-VM side channel attacks on crypto algorithms

+ RSA: 96.7% of secret key bits in a single signature
« AES: full key recovery in 30000 dec. (a few seconds)

+ covert channels in native environments cross-VM: 298 KBps

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014

B. Glilmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: Constructive Side-Channel Analysis and Secure Design (COSADE).
2015
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Flush+Reload: Pros and cons

« high spatial resolution: 1 cache line (64 Bytes)

21



Flush+Reload: Pros and cons

« high spatial resolution: 1 cache line (64 Bytes)

« but requires shared memory + c1flush instruction

21



Flush+Reload: Pros and cons

« high spatial resolution: 1 cache line (64 Bytes)
« but requires shared memory + c1flush instruction

— memory deduplication between VMs

21



Easy solution #2

Possible side channels using

memory deduplication?
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Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Cache attacks: Prime+Probe
|
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Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
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Challenges with Prime+Probe

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?

3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)

24



Prime+Probe: Applications

« cross-VM side channel attacks on crypto algorithms:
« El Gamal (sliding window): full key recovery in 12 min.

« tracking user behavior in the browser, in JavaScript
« covert channels between virtual machines in the cloud

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.
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Easy solution #3

Possible side channels using

components shared by a CPU?
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Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?
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Recent Advances




Recent advances

Increasing the attack surface
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It's not just caches: DRAM, GPU, TLB, CPU ports, Ring interconnect...!

PortSmash
Translation leak-aside buffer S&P'19
USENIX Sec'18 >

iiemory Pipeline
5 e

@) Gcof-pder Engine

DRAMA
USENIX Sec'16

Lord of the Ring(s)

USENIX Sec'21 Grand Pwning Unit,
S&P'18 28



It's not just side channels: Fault attacks too!
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Recent advances

Transient execution attacks
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Transient execution attacks

« novel class of attacks # side-channel attacks
oﬁc/ — transient execution attacks leak the actual target data

« disclosed in 2018 with Spectre and Meltdown
SPECTRE

C. Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security Symposium. 2019

https://transient.fail/
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Transient execution attacks

« novel class of attacks # side-channel attacks
oﬁc/ — transient execution attacks leak the actual target data
« disclosed in 2018 with Spectre and Meltdown

SPECTRE
* SO MANY VARIANTS

C. Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security Symposium. 2019

https://transient.fail/
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https://transient.fail/
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Transient execution attacks

« CPU avoids waiting for input data or availability of execution units
— out-of-order execution and speculation

+ sequential semantics is preserved
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Transient execution attacks

« CPU avoids waiting for input data or availability of execution units
— out-of-order execution and speculation

+ sequential semantics is preserved

« some instructions are never committed, i.e., finally executed

« instructions that cause an exception + following instructions
« instructions in branches that are mispredicted

» these instructions are called transient instructions

- architectural state — everything is fine
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Transient execution attacks

attacker uses a covert channel to encode the secret

« issue: instructions not committed leave traces in
microarchitecture

microarchitectural state is not supposed to be visible...

... but we know how to recover the state of caches

)
=
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Transient execution attacks

- attacker uses a covert channel to encode the secret

« issue: instructions not committed leave traces in
microarchitecture

’ + microarchitectural state is not supposed to be visible...
‘ + ... but we know how to recover the state of caches
: \ « microarchitectural state — everything is not fine

+ leaking kernel memory, recovering passwords...
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Transient execution attacks
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attacker uses a covert channel to encode the secret

issue: instructions not committed leave traces in
microarchitecture

microarchitectural state is not supposed to be visible...
... but we know how to recover the state of caches

microarchitectural state — everything is not fine

leaking kernel memory, recovering passwords...

difficult to fix: lazy error handling was a bug, but speculative
execution is a feature!
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Porting micro-architectural attacks to the Web

+ side-channel attacks on the cache, DRAM, MMU, (...), and
transient execution attacks like Spectre, ret2spec, RIDL, (...),
are coming to web browsers

- very low-level attacks in a high-level language with many
abstraction layers in between

« complex but not impossible to perform

fundamentally hard or impossible to fix in the browser

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021
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JS and timers: A complicated history

Chrome 44 Chrome 64 Chrome 72
resolution: resolution + jitter: resolution + jitter:
5us 100 s 5Us
} L } Jr L } } >
2015 T 2016 201& 2019 2020 T
Firefox 4 Firefox 57.0. Firefox 79
resolution: resolution:| 20 s & COOP/COEP:
5Hs Firefox 59 resolution:
resolution: p ms 20 Us
Firefox 60
resolution + jitter:
ms

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021
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JS and timers: A complicated history

- initial countermeasures: lowering timer resolution

‘ + browsers are adopting better isolation between websites
(e.g., Site Isolation) to counter transient execution attacks
- + back to higher timer resolution for usability — side-channel
‘ attacks are possible again!

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021
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Recent advances

Automating vulnerability and side channel discovery
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Automating vulnerability and side channel discovery

- CacheAudit USENIX Sec "13

Static analysis — ct-verif USENIX Sec "16

—— Binsec/Rel s&pP 20

Vulnerability discovery — — CacheD USENIX Sec 17

— MicroWalk ACSAC 18
—— Dynamic analysis ——— DATA USENIX Sec 18

—— ABSynthe NDSS 20

40



Future and Challenges




Challenges and questions

« lack of documentation on microarchitectural components

« which components are vulnerable to these attacks?

« which software is vulnerable to these attacks?

« why do we still manually find vulnerabilities when we have automated tools?

 how to prevent attacks based on performance optimizations without
removing performance?

CVE-2018-5407, CVE-2019-1563, CVE-2018-10844, CVE-2018-16868, CVE-2019-19960, CVE-2019-19963,
CVE-2020-10932, CVE-2020-11713

A



- first paper by Kocher in 1996: 25 years of research in this area

« domain still in expansion: increasing number of papers published since 2015
+ adopted countermeasures mainly target cryptographic implementations

« still a lot more to discover!

« quick fixes don’t work

« still a lot more work needed to find satisfying countermeasures
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Thank you!

Contact

¥ clementine.maurice@inria.fr

¥ @BloodyTangerine
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