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Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations
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Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.
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Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.
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Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2



Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be
ro
fa
cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)

2



Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be
ro
fa
cc
es
se
s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment
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This computer supports SGX1 using Intel’s SGX driver. The
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the public API of the victim’s enclave.
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Attacker model

Hardware-based attacks
a.k.a physical attacks

Software-based attacks
a.k.a micro-architectural attacks

vs

Physical access to hardware
→ embedded devices

Co-located or remote attacker
→ complex systems
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Side-channel attacks
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From small optimizations…

2011 Sandy Bridge

2012 Ivy Bridge

2013 Haswell

2014 Broadwell

2015 Skylake

2016 Kaby Lake

2017 Coffee Lake

2018 Whiskey Lake

2019 Comet Lake/Ice Lake

2020 Tiger Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…
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… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations

• several processes are sharing microarchitectural components
• attacker infers information from a (vulnerable) victim process via hardware
usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions→ hard to detect
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Recent advances

Future and challenges
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Historical Recap



Micro-architectural attacks: Two faces of the same coin

Implementation Hardware

&
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Research questions

1. Which software implementation is vulnerable?

2. Which hardware component is vulnerable?
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1. Which software implementation is vulnerable?

State of the art (more or less)
1. Spend too much time reading OpenSSL code
2. Find vulnerability
3. Exploit it manually using known side channel

→ e.g. CPU cache
4. Publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438,

CVE-2018-0495, CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628,

CVE-2019-13629, CVE-2020-16150
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2. Which hardware component leaks information?

State of the art (more or less)
1. Spend too much time reading Intel manuals
2. Find weird behavior in corner cases
3. Exploit it
4. Publish
5. goto step 1

11



From theoretical to practical cache attacks

• first theoretical attack in 1996 by Kocher
• first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik
et al.

• renewed interest for the field in 2014 after Flush+Reload by Yarom and
Falkner

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

12



Hyper-threading: Same-core attacks

• threads sharing one core share resources: L1, L2 cache, branch predictor
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Easy solution #1

Possible side channels using
components shared by a core?

Stop sharing a core!
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Caches on Intel CPUs
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• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive
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Set-associative caches
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Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
16



Cache attacks

• caches improve performance

• SRAM is expensive→ small caches
• different timings for memory accesses

1. data is cached→ cache hit→ fast
2. data is not cached→ cache miss→ slow

• cache attacks leverage this timing difference
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Timing differences
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Flush+Reload: Applications

• cross-VM side channel attacks on crypto algorithms
• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• covert channels in native environments cross-VM: 298 KBps

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014
B. Gülmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: Constructive Side-Channel Analysis and Secure Design (COSADE).

2015
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Flush+Reload: Pros and cons

• high spatial resolution: 1 cache line (64 Bytes)

• but requires shared memory + clflush instruction
→ memory deduplication between VMs
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Easy solution #2

Possible side channels using
memory deduplication?

Disable memory deduplication!
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)

24



Prime+Probe: Applications

• cross-VM side channel attacks on crypto algorithms:
• El Gamal (sliding window): full key recovery in 12 min.

• tracking user behavior in the browser, in JavaScript
• covert channels between virtual machines in the cloud

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

25



Easy solution #3

Possible side channels using
components shared by a CPU?

Stop sharing a CPU!?
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Recent Advances



Recent advances

Increasing the attack surface

27



It’s not just caches: DRAM, GPU, TLB, CPU ports, Ring interconnect...!

DRAMA

USENIX Sec'16

Grand Pwning Unit

S&P'18

Translation leak�aside buffer

USENIX Sec'18

PortSmash

S&P'19

Lord of the Ring(s)

USENIX Sec'21

28



It’s not just side channels: Fault attacks too!

29



Recent advances

Transient execution attacks

30



Transient execution attacks

• novel class of attacks ̸= side-channel attacks
→ transient execution attacks leak the actual target data
• disclosed in 2018 with Spectre and Meltdown

• SO MANY VARIANTS

C. Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security Symposium. 2019
https://transient.fail/

31
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Transient execution attacks

• CPU avoids waiting for input data or availability of execution units
→ out-of-order execution and speculation
• sequential semantics is preserved

• some instructions are never committed, i.e., finally executed
• instructions that cause an exception + following instructions
• instructions in branches that are mispredicted

• these instructions are called transient instructions

• architectural state→ everything is fine
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Transient execution attacks

• attacker uses a covert channel to encode the secret
• issue: instructions not committed leave traces in
microarchitecture

• microarchitectural state is not supposed to be visible...
• ... but we know how to recover the state of caches

• microarchitectural state→ everything is not fine

• leaking kernel memory, recovering passwords…
• difficult to fix: lazy error handling was a bug, but speculative
execution is a feature!
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Recent advances

Porting micro-architectural attacks to the Web
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Porting micro-architectural attacks to the Web

• side-channel attacks on the cache, DRAM, MMU, (…), and
transient execution attacks like Spectre, ret2spec, RIDL, (…),
are coming to web browsers

• very low-level attacks in a high-level language with many
abstraction layers in between

• complex but not impossible to perform
• fundamentally hard or impossible to fix in the browser

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021

36



JS and timers: A complicated history

2015 2016 2018 2019 2020
Firefox 41
resolution:

5 µs

Firefox 79
& COOP/COEP:
resolution:
20µs

Firefox 60
resolution + jitter:

1ms

Firefox 59
resolution: 2ms

Firefox 57.0.4
resolution: 20 µs

Chrome 44
resolution:

5 µs

Chrome 64
resolution + jitter:

100µs

Chrome 72
resolution + jitter:

5 µs

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021
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JS and timers: A complicated history

• initial countermeasures: lowering timer resolution
• browsers are adopting better isolation between websites
(e.g., Site Isolation) to counter transient execution attacks

• back to higher timer resolution for usability→ side-channel
attacks are possible again!

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021
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Recent advances

Automating vulnerability and side channel discovery
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Automating vulnerability and side channel discovery

Vulnerability discovery

Dynamic analysis

...
ABSynthe NDSS ’20
DATA USENIX Sec ’18
MicroWalk ACSAC ’18
CacheD USENIX Sec ’17

Static analysis

...
Binsec/Rel S&P ’20
ct-verif USENIX Sec ’16

CacheAudit USENIX Sec ’13

40



Future and Challenges



Challenges and questions

• lack of documentation on microarchitectural components
• which components are vulnerable to these attacks?
• which software is vulnerable to these attacks?
• why do we still manually find vulnerabilities when we have automated tools?
• how to prevent attacks based on performance optimizations without
removing performance?

CVE-2018-5407, CVE-2019-1563, CVE-2018-10844, CVE-2018-16868, CVE-2019-19960, CVE-2019-19963,
CVE-2020-10932, CVE-2020-11713

41



Conclusion

• first paper by Kocher in 1996: 25 years of research in this area
• domain still in expansion: increasing number of papers published since 2015
• adopted countermeasures mainly target cryptographic implementations
• still a lot more to discover!
• quick fixes don’t work
• still a lot more work needed to find satisfying countermeasures

42



Thank you!

Contact

 clementine.maurice@inria.fr

 @BloodyTangerine



Evolution of micro-architectural attacks

Clémentine Maurice, CNRS, CRIStAL
17 December 2021—32nd HP/HPE (Virtual) Colloquium On Information Security
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