Evolution des attaques sur la micro-architecture

Clémentine Maurice, CNRS, CRIStAL
15 Octobre 2021—Journée Sécurité SIF, GDR Sécurité Informatique, RSD et SOC2

Attacks on micro-architecture

« hardware usually modeled as an abstract layer behaving correctly

Attacks on micro-architecture

« hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

Attacks on micro-architecture

« hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
« faults: bypassing software protections by causing hardware errors
« side channels: observing side effects of hardware on computations

Attacks on micro-architecture

Number of accesses

« hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
« faults: bypassing software protections by causing hardware errors
« side channels: observing side effects of hardware on computations

identification

(10 cache hits [1 0 cache misses

100 200 300 400

104
10" ‘

Access time [CPU cycles] 2

Attacks on micro-architecture

Number of accesses

« hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
« faults: bypassing software protections by causing hardware errors
« side channels: observing side effects of hardware on computations

identification attack

107

1

111011 11010001001 11010001 1 100001 11

A

3
2

(10 cache hits [1 0 cache misses
- retrieving secret keys, keystroke

! !
HHH”l ||.|.| | HHHH |H‘.HHHHI‘HH| timings

100 200 300 oo + bypassing 0S security (ASLR)

Access time [CPU cycles] 2

3

Attacker model

Hardware-based attacks Software-based attacks
a.k.a physical attacks a.k.a micro-architectural attacks

Physical access to hardware Co-located or remote attacker
— embedded devices — complex systems

Vs

From small optimizations...

2011 @ Sandy Bridge

2012 @ vy Bridge

2013 @ Haswell

201 @ Broadwell + new microarchitectures yearly
2015 @ Skylake

2016 @ Kaby Lake

2017 @ Coffee Lake

2018 @ Whiskey Lake

2019 @ Comet Lake/Ice Lake

2020 @ Tiger Lake

From small optimizations...

2011 @ Sandy Bridge

2012 @ vy Bridge

2013 @ Haswell

201 @ Broadwell « new microarchitectures yearly
2015 @ Skylake ° performance improvement ~5%
2016 @ Kaby Lake

2017 @ Coffee Lake

2018 @ Whiskey Lake

2019 @ Comet Lake/Ice Lake

2020 @ Tiger Lake

From small optimizations...

2011 @ Sandy Bridge

2012 @ vy Bridge

2013 @ Haswell

2014 @ Broadwell + new microarchitectures yearly

2015 @ Skylake « performance improvement ~ 5%

2016 @ Kaby Lake - very small optimizations: caches, branch
2017 @ Coffee Lake prediction...

2018 @ Whiskey Lake

2019 @ Comet Lake/lce Lake

2020 @ Tiger Lake

... To microarchitectural side-channel attacks

 microarchitectural side channels come from these optimizations

... To microarchitectural side-channel attacks

 microarchitectural side channels come from these optimizations

« several processes are sharing microarchitectural components

... To microarchitectural side-channel attacks

 microarchitectural side channels come from these optimizations
« several processes are sharing microarchitectural components

- attacker infers information from a (vulnerable) victim process via hardware
usage

... To microarchitectural side-channel attacks

 microarchitectural side channels come from these optimizations
« several processes are sharing microarchitectural components

- attacker infers information from a (vulnerable) victim process via hardware
usage

- pure-software attacks by unprivileged processes

... To microarchitectural side-channel attacks

 microarchitectural side channels come from these optimizations

« several processes are sharing microarchitectural components

- attacker infers information from a (vulnerable) victim process via hardware
usage

- pure-software attacks by unprivileged processes

« sequences of benign-looking actions — hard to detect

Historical recap of past attacks

Historical recap of past attacks

Recent advances

Historical recap of past attacks
Recent advances

Future and challenges

Historical Recap

Micro-architectural attacks: Two faces of the same coin

OJii0

Implementation 32l Hardware

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: b® mod n
X<+ 1
for i + bitlen(e) downto 0 do
X« multiply(X, X)
if e, = 1then &
‘ X+ multiply(X, b)
end
end
return X

Research questions

1. Which software implementation is vulnerable?

2. Which hardware component is vulnerable?

1. Which software implementation is vulnerable?

State of the art (more or less)
1. Spend too much time reading OpenSSL code
2. Find vulnerability

3. Exploit it manually using known side channel
— e.g. CPU cache

4. Publish
5. goto step 1

For example: CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439, CVE-2016-7438,

CVE-2018-0495, CVE-2018-0737, CVE-2018-10846, CVE-2019-9495, CVE-2019-13627, CVE-2019-13628,

CVE-2019-13629, CVE-2020-16150

2. Which hardware component leaks information?

State of the art (more or less)
1. Spend too much time reading Intel manuals

. Find weird behavior in corner cases

2

3. Exploit it
4. Publish

5. goto step 1

10

From theoretical to practical cache attacks

« first theoretical attack in 1996 by Kocher
- first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik

et al.
- renewed interest for the field in 2014 after Flush+Reload by Yarom and

Falkner

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

1"

Hyper-threading: Same-core attacks

- threads sharing one core share resources: L1, L2 cache, branch predictor

[32K L1 Instruction Cache pi~[Pre-decode p»{Instr Queue
Decoders
Branch Predictor
1.5K uOP Cache
Load Store Reorder ’7
Buffers Buffers Buffers Allocate/Rename/Retire
In-order
*********************** outc atﬁde?
[Scheduler
[Port0O | [Port1 | [Port5 | [Port2 | [Port3 | \Port4
AW ALU [Load]
[V-Mu_]| [V-Add StAddr | [StAddr |
[Veshuffig | V-Shuf zss FP Shuf
Fdiv [256- FP Add | [256- FP Bool |
256- FPMUL 256 FP Blen
256- FP Blend Memury Control
48 bytes/cycle

Line Fill
=l 256K L2 Cache (Unified) Butfers
< . 32K L1 Data Cache

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

12

Easy solution #1

Possible side channels using

components shared by a core?

13

Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!

13

Caches on Intel CPUs

core 0 core1 core 2 core3
[[[[
I
[[[[
1 1 1 =
ring bus
I I I I 4/
| | | |
LLC LLC LLC LLC
slice o slice 1 slice 2 slice 3

14

Caches on Intel CPUs

re3
[[[[
5 L L1 L H
11 ‘ ‘ ; ‘ ‘ 11 ‘ ‘ 11 « L1and L2 are private
L2 ‘ ‘ L2 ‘ ‘ B ‘ ‘ = ring bus
[[[[4/
| | | |
LLC LLC LLC LLC
lice o lice 1 slice 2 lice 3

14

Caches on Intel CPUs

e — - —
[[[[
‘ LI‘ ‘ ‘ L; ‘ ‘ L; ‘ ‘ LI‘ ‘ * L1and L2 are private
I - last-level cache
‘ ‘ ‘ ‘ ./ « divided in slices
: : : : « shared across cores
LLC LLC LLC LLC : InCI-USIVe
slice o slice 1 slice 2 slice 3

14

Set-associative caches

1617 2526 £l

Address ‘ ‘ Index ‘ Offset

Cache

15

Set-associative caches

o 1617 2526 3

Address Index ‘ Offset

Cache set
N

Cache

Data loaded in a specific set depending on its address

15

Set-associative caches

o 1617 2526 3

Address Index ‘ Offset

way O way 3

Cache set
N

Cache

Data loaded in a specific set depending on its address

Several ways per set

15

Set-associative caches

o 1617 2526 3

Address ndex ‘ P ‘
way O way 3
Cache set
~ .
A
cache line ——————+f
Cache

Data loaded in a specific set depending on its address
Several ways per set

Cache line loaded in a specific way depending on the replacement policy
15

Cache attacks

+ caches improve performance

16

Cache attacks

+ caches improve performance

« SRAM is expensive — small caches

16

Cache attacks

+ caches improve performance

« SRAM is expensive — small caches
« different timings for memory accesses

16

Cache attacks

+ caches improve performance

« SRAM is expensive — small caches
« different timings for memory accesses
1. data is cached — cache hit — fast

16

Cache attacks

+ caches improve performance

« SRAM is expensive — small caches
« different timings for memory accesses

1. data is cached — cache hit — fast
2. data is not cached — cache miss — slow

16

Cache attacks

+ caches improve performance

« SRAM is expensive — small caches
« different timings for memory accesses

1. data is cached — cache hit — fast
2. data is not cached — cache miss — slow

- cache attacks leverage this timing difference

16

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

18

Cache attacks: Flush+Reload

T —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

18

Cache attacks: Flush+Reload

Aushes

T —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

18

Cache attacks: Flush+Reload

loads data

—

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line
Step 3: Victim loads the data

18

Cache attacks: Flush+Reload

reloads data
Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

Step 4: Attacker reloads the data 18

Flush+Reload: Applications

« cross-VM side channel attacks on crypto algorithms

+ RSA: 96.7% of secret key bits in a single signature
« AES: full key recovery in 30000 dec. (a few seconds)

+ covert channels in native environments cross-VM: 298 KBps

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014

B. Glilmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: Constructive Side-Channel Analysis and Secure Design (COSADE).
2015

19

Flush+Reload: Pros and cons

« high spatial resolution: 1 cache line (64 Bytes)

20

Flush+Reload: Pros and cons

« high spatial resolution: 1 cache line (64 Bytes)

« but requires shared memory + c1flush instruction

20

Flush+Reload: Pros and cons

« high spatial resolution: 1 cache line (64 Bytes)
« but requires shared memory + c1flush instruction

— memory deduplication between VMs

20

Easy solution #2

Possible side channels using

memory deduplication?

21

Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!

21

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

22

Cache attacks: Prime+Probe
|

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

22

Cache attacks: Prime+Probe

loads data

R

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

22

Cache attacks: Prime+Probe

loads data

R

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

22

Cache attacks: Prime+Probe

e -

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running
Step 3: Attacker probes data to determine if set has been accessed

22

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running
Step 3: Attacker probes data to determine if set has been accessed

22

Challenges with Prime+Probe

We need to evict caches lines without c1flush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?

3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)

23

Prime+Probe: Applications

« cross-VM side channel attacks on crypto algorithms:
« El Gamal (sliding window): full key recovery in 12 min.

« tracking user behavior in the browser, in JavaScript
« covert channels between virtual machines in the cloud

F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS15. 2015.
C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

24

Easy solution #3

Possible side channels using

components shared by a CPU?

25

Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?

25

Recent Advances

Recent advances

Transient execution attacks

26

Transient execution attacks

ﬁc/ « novel class of attacks # side-channel attacks
&)

- discovered in 2018 with Spectre and Meltdown
SPECTRE

C. Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security Symposium. 2019

https://transient.fail/

27

https://transient.fail/

Transient execution attacks

ﬁc/ « novel class of attacks # side-channel attacks
&)

- discovered in 2018 with Spectre and Meltdown
SPECTRE + SO MANY VARIANTS

C. Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”. In: USENIX Security Symposium. 2019

https://transient.fail/

27

https://transient.fail/

Transient execution attacks

« CPU avoids waiting for input data or availability of execution units
— out-of-order execution and speculation

+ sequential semantics is preserved

28

Transient execution attacks

« CPU avoids waiting for input data or availability of execution units
— out-of-order execution and speculation

+ sequential semantics is preserved

« some instructions are never committed, i.e., finally executed

« instructions that cause an exception + following instructions
« instructions in branches that are mispredicted

» these instructions are called transient instructions

28

Transient execution attacks

« CPU avoids waiting for input data or availability of execution units
— out-of-order execution and speculation

+ sequential semantics is preserved

« some instructions are never committed, i.e., finally executed

« instructions that cause an exception + following instructions
« instructions in branches that are mispredicted

» these instructions are called transient instructions

- architectural state — everything is fine

28

Transient execution attacks

« issue: instructions not committed leave traces in
microarchitecture

« microarchitectural state is not supposed to be visible...
... but we know how to recover the state of caches

@)

\

29

Transient execution attacks

« issue: instructions not committed leave traces in
microarchitecture

« microarchitectural state is not supposed to be visible...
... but we know how to recover the state of caches

+ microarchitectural state — everything is not fine

29

Transient execution attacks

« issue: instructions not committed leave traces in
microarchitecture

« microarchitectural state is not supposed to be visible...
... but we know how to recover the state of caches

+ microarchitectural state — everything is not fine

« leaking kernel memory, recovering passwords...

29

Transient execution attacks

« issue: instructions not committed leave traces in
microarchitecture

« microarchitectural state is not supposed to be visible...
... but we know how to recover the state of caches

+ microarchitectural state — everything is not fine

« leaking kernel memory, recovering passwords...

« difficult to fix: lazy error handling was a bug, but speculative
execution is a feature!

29

Recent advances

Porting micro-architectural attacks to the Web

30

Porting micro-architectural attacks to the Web

+ side-channel attacks on the cache, DRAM, MMU, (...), and
transient execution attacks like Spectre, ret2spec, RIDL, (...),
are coming to web browsers

- very low-level attacks in a high-level language with many
abstraction layers in between

« complex but not impossible to perform

fundamentally hard or impossible to fix in the browser

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021

31

JS and timers: A complicated history

Chrome 44 Chrome 64 Chrome 72
resolution: resolution + jitter: resolution + jitter:
5us 100 s 5Us
} L } Jr L } } >
2015 T 2016 201& 2019 2020 T
Firefox 4 Firefox 57.0. Firefox 79
resolution: resolution:| 20 s & COOP/COEP:
5Hs Firefox 59 resolution:
resolution: p ms 20 Us
Firefox 60
resolution + jitter:
ms

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021

32

JS and timers: A complicated history

- initial countermeasures: lowering timer resolution

‘ + browsers are adopting better isolation between websites
(e.g., Site Isolation) to counter transient execution attacks
- + back to higher timer resolution for usability — side-channel
‘ attacks are possible again!

T. Rokicki, C. Maurice, and P. Laperdrix. “Sok: In search of lost time: A review of javascript timers in browsers”. In: EuroS&P’21. 2021

33

Recent advances

Automating vulnerability and side channel discovery

34

Automa
ting vulnerability and side channel discov
ery

ARTIFACT

Qsiris: Automated Discovery of [SN Non

Microarchitectural Side Channels

aig] Weber, Abmad [orair, Hamed Nemath, Michael Schwars, Christian RossoW
- \CISPA Helmholtz Center for Information Security

¢ been used in
Jlementations, of

s Spec “batraction also enables CPU vendors to introduce FaNSPAr-
acks such as SPec- ! "
P ent optimizations it the microarchitecture without requiring

" b regularly introduce 1% <ide channels that atackers can ex-
i, “’é‘:l‘i;‘l“ji“i'zk'f’::’“‘;‘t ploit 3,10, 56, 69 74 80, 86, 891
" ;“rup,,u"%\ i sfication 0’ CPU's 1S ., ‘Although new side channels are commonly found. discover™
<acy O " 125, e iples and ot ing a side channel typically requires ‘manual cffort and a deep
bisey 5% g e side ch " erstanding of the underlying ‘microarchitecture. Moreover:
sy ey g el o j‘,h"“ oL with “ultiple thousand variants o instructions available o
i Pro- e \{:f“;};lzn;‘crl) :L;‘;f"‘u“‘;l {he x86 architecture alone {11, the number of possible side e~
v Heces that can ogeur when combinne instructions is 100 1arEe

EVALUATED

Side channels often arise from abstraction and opUimiZd-

ave been dis- on [79]. For example due to the internal complexity of
‘modern CPUS, the actal implementation, .c.. e ‘microarchi-

Teetue, is abstracted into the Socumented architecture: THiS

. discovering side e
s changes in the architeeture However, these optimization®

e, manually identified side channels

DATA - Differenti
. ntial Address Tra
nding Address-based Side'ChannceTsA“alys

Binaries

Samuel Weiser!
S . Andreas Z: 2 Pl
feiser ankl?, R i
Katja Miller?, Stefan Mangard' ajgrg::)rsg : Ilr’e“llv
. Sigh?

1 -
Graz University of Technology.

‘raunhofer AISEC, *Techni
. “Technical University of Munich

Abstract

target a
get for various side-channel attacks [11,45,77
.45,77),

e b rndearmineac rurtecranh:

Recent advances

Reproducible research?

36

Reproducible research?

« research on micro-architectural attacks is very difficult
to reproduce

T + advances: code sharing and Artifact Evaluation at major
conferences like USENIX Security or ASPLOS

« ANR ARCHI-SEC: leveraging gems to improve
reproducibility and build countermeasures (joint
ARCHI-SEC project with Télécom Paris, LIRMM, Laboratoire Hubert
Curien, SECURE-IC, CRIStAL)

37

Future and Challenges

Challenges and questions

« lack of documentation on microarchitectural components

« which components are vulnerable to these attacks?

« which software is vulnerable to these attacks?

« why do we still manually find vulnerabilities when we have automated tools?

+ how to prevent attacks based on performance optimizations without
removing performance?

38

- first paper by Kocher in 1996: 25 years of research in this area

« domain still in expansion: increasing number of papers published since 2015
+ adopted countermeasures mainly target cryptographic implementations

« still a lot more to discover!

« quick fixes don’t work

« still a lot more work needed to find satisfying countermeasures

39

Thank you!

Contact

¥ clementine.maurice@inria.fr

¥ @BloodyTangerine

Evolution des attaques sur la micro-architecture

Clémentine Maurice, CNRS, CRIStAL
15 Octobre 2021—Journée Sécurité SIF, GDR Sécurité Informatique, RSD et SOC2

	Historical Recap
	Recent Advances
	Future and Challenges

