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Fault attacks

• side channels: non-legitimate “read primitive”

• can we have a “write primitive”?
• yes! fault attacks!
• why is that a problem? hardware can bypass software security mechanisms
→ software cannot trust hardware anymore
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Software-based fault attacks?

• until 2014, fault attacks required physical access: changes in temperature,
clock, voltage, electric/magnetic fields, …

• core idea of fault attacks: pushing hardware beyond nominal operating
conditions

• software can do that too!
• 2014: Rowhammer (Kim et al.)

• first reaction: ” it’s a reliability issue, not a security issue”
• 2015: Google Project Zero showed a sandbox escape and a privilege
escalation attack using Rowhammer

Yoongu Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.
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Outline

• Background on DRAM and Rowhammer
• How do we get bip flips?
• How do we target memory accesses?
• Can we exploit these bit flips?
• Countermeasures
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Background on DRAM and Rowhammer
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DRAM organization

channel 0
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back of DIMM: rank 1

front of DIMM:
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chip
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DRAM organization

chip
bank 0
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…

row 32767

row buffer

64k cells
1 capacitor,

1 transitor each
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DRAM row buffer

• DRAM internally is only capable of reading entire rows

• capacitors in cells discharge when you “read the bits”
• buffer the bits when reading them from the cells
• write the bits back to the cells when you’re done

→ row buffer
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

rowbuffer = cache
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DRAM refresh

• cells leak → repetitive refresh necessary
• refresh ≈ reading (destructive) + writing same data again
• maximum interval between refreshes to guarantee data integrity

• cells leak faster upon proximate accesses → fault attack
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Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice
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Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

11



Requirements

Memory accesses must be

• uncached: reach DRAM
• fast: race against the next row refresh
• targeted: reach specific row
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Issue #1: How do we get bit flips?
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Impact of the CPU cache

CPU
core

CPU
cache

DRAM

• only non-cached accesses reach DRAM
• original attacks use clflush instruction

→ flush line from cache
→ next access will be served from DRAM

14



How to reach DRAM?

1. clflush instruction → original paper (Kim et al.)

2. cache eviction (Gruss et al., Aweke et al.)

3. non-temporal accesses (Qiao et al.)

4. uncached memory (van der Veen et al.)

5. remotely (Lipp et al., Tatar et al.)

Yoongu Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.
Daniel Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.
Zelalem Birhanu Aweke et al. “ANVIL: Software-based protection against next-generation rowhammer attacks”. In: ACM SIGPLAN Notices 51.4 (2016),

pp. 743–755.
Rui Qiao et al. “A new approach for rowhammer attacks”. In: HOST 2016. 2016.
Victor van der Veen et al. “Drammer: Deterministic Rowhammer Attacks on Mobile Platforms”. In: CCS’16. 2016.
Moritz Lipp et al. “Nethammer: Inducing Rowhammer Faults through Network Requests”. In: arXiv:1805.04956 (2018).
Andrei Tatar et al. “Throwhammer: Rowhammer Attacks over the Network and Defenses”. In: USENIX ATC 2018. 2018.
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#1 Hammering with clflush

begin:
mov (X), %eax // read from address X
mov (Y), %ebc // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
jmp begin

Yoongu Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014.
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#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1
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#1 Hammering with clflush
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#1 Hammering with clflush

DRAM bank

cache set 2

cache set 1

reload

reload

bit flip!
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Flush, reload, flush, reload…

• the core of Rowhammer is essentially a Flush+Reload loop
• as much an attack on DRAM as on cache

18



#2 Hammering with cache eviction

• idea: avoid clflush to be independent of specific instructions
→ no clflush in JavaScript

• what can we do?
• our approach: use regular memory accesses for eviction

→ techniques from cache attacks
→ Rowhammer using Prime+Probe

• beware of the replacement policy!

Daniel Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.
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#2 Hammering with cache eviction
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#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

repeat!

20



#2 Hammering with cache eviction
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#2 Hammering with cache eviction

DRAM bank

cache set 2

cache set 1

bit flip!
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#2 Hammering with cache eviction: Evaluation on Haswell

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
100
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Refresh interval in µs (BIOS configuration)
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clflush Evict (Native) Evict (JavaScript)
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#3 Hammering with non-temporal accesses

• non-temporal accesses: data accessed just once, not in the future
• NTA instructions → bypass cache to minimize cache pollution

• issue: NT stores to 1 address are combined at write-combining buffer
• only last write goes to DRAM → rate not sufficient
• solution: following cached access to same address

Rui Qiao et al. “A new approach for rowhammer attacks”. In: HOST 2016. 2016.
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#3 Hammering with non-temporal accesses

begin:
movnti %eax, (X)
movnti %eax, (Y)

jmp begin

→

begin:
movnti %eax, (X)
movnti %eax, (Y)
mov %eax, (X)
mov %eax, (Y)
jmp begin
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#4 Hammering with uncached memory

Sometimes, everything fails, e.g., on mobile devices

• ARMv7 flush instruction is privileged
• cache eviction seems to be too slow
• ARMv8 non-temporal stores are still cached in practice

Victor van der Veen et al. “Drammer: Deterministic Rowhammer Attacks on Mobile Platforms”. In: CCS’16. 2016.
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#4 Hammering with uncached memory

• ION: memory management since Android 4.0
• apps can use /dev/ion for uncached, physically contiguous memory
• no privilege and no permission needed

25



#5 Remote hammering

• previous work: some code execution (even JS)
• how about remote attacks, i.e., triggered by network packets?

• Tatar et al. use RDMA, fast network communication that does not involve the
CPU

• Lipp et al. use Intel CAT that restricts cache allocation to a subset of cache ways
for QoS

Moritz Lipp et al. “Nethammer: Inducing Rowhammer Faults through Network Requests”. In: arXiv:1805.04956 (2018).
Andrei Tatar et al. “Throwhammer: Rowhammer Attacks over the Network and Defenses”. In: USENIX ATC 2018. 2018.
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How widespread is the issue?

DDR3:
• Kim et al.: 110/129 modules
from 3 vendors, all but 3
since mid-2011

• Seaborn and Dullien: 15/29
laptops

DDR4 believed to be safe:
• still bit flips (Pessl et al.) Prevalence, by Kim et al.

Peter Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
Yoongu Kim et al. “Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors”. In: ISCA’14. 2014. 27



Issue #2: How do we target accesses?
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Physical addresses and DRAM

• fixed map: physical addresses → DRAM cells
• undocumented for Intel

→ reverse-engineered by Pessl et al.

...678911 1012131416171819202122...

Rank

BG0

BG1
BA0

Ch.

15

BA1

23242526

CPU

Peter Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
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Memory controller policies

• open-page policy: keep row opened and buffered
• low latency for subsequent accesses to same row
• high latency for accesses to any other row

• close-page policy: immediately close row, ready to open a new row
• medium latency for accesses to any row
• perform better on multi-core systems

Daniel Gruss et al. “Another Flip in the Wall of Rowhammer Defenses”. In: S&P’18. 2018.
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“Double-sided hammering”

With an open-page policy, you need to alternate accesses to two rows

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer
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“One-location hammering”

With a close-page policy, you can hammer a single row

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer
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Issue #3: Can we exploit these bit flips?

33



How to exploit random bit flips?

• Rowhammer was deemed non-exploitable and only a reliability issue

• bit flips are not random → highly reproducible flip pattern!
• ideas for exploitation

1. bit flip in data structure, e.g., page table
2. bit flip in instruction opcode
3. bit flip in signature (→ fault-based cryptanalysis)
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Bit flips in page tables

General idea

1. allocate a large chunk of memory
2. scan for “good” flips with your own buffer
3. return that particular area of memory to the OS
4. force OS to place data structure there → page tables are good for this
5. trigger bit flip again
6. profit

Mark Seaborn. Exploiting the DRAM rowhammer bug to gain kernel privileges.
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html. Retrieved on June 26, 2015.
2015.
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Bit flips in page tables

• x86 page tables entries (PTEs) control access to physical memory
• bit flip in a PTE’s physical page number can give a process access to a
different physical page

• aim of exploit: get access to a page table
→ gives access to all of physical memory

• maximize chances that a bit flip is useful by “spraying” physical memory with
page tables

36
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Bit flips in page tables

Page table: 4k page containing array of 512 PTEs (64 bits each)

Could flip

• “writable” permission bit (RW): 1 bit → 2% chance
• physical page number: 20 bits on 4GB system → 31% chance
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Bit flips in page tables

virtual
address
space

physical
memory

• mapping a file with read-write
permissions?

→ indirection via page tables
• repeatedly mapping a file with
read-write permissions?

→ more PTEs in physical memory!

• we can fill physical memory with PTEs
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Bit flips in page tables

virtual
address
space

physical
memory

• physical memory is filled with PTEs

• if a bit flips in the right place in the PTE…
• … the corresponding virtual address
now points to a wrong physical page,
with RW access, with a great chance the
page contains a PT itself

• use that to map any memory read/write
• including kernel memory
→ privilege escalation
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Bit flips in instruction opcode

• some applications perform actions as root
• can be used by unprivileged users

• ping, mount, sudo

Daniel Gruss et al. “Another Flip in the Wall of Rowhammer Defenses”. In: S&P’18. 2018.
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Bit flips in instruction opcode

0 1 1 1 0 1 0 0

JE
1 1 1 1 0 1 0 0

HLT

0 0 1 1 0 1 0 0

XORB
0 1 0 1 0 1 0 0

PUSHQ
0 1 1 0 0 1 0 0

<prefix>

0 1 1 1 1 1 0 0

JL
0 1 1 1 0 0 0 0

JO
0 1 1 1 0 1 1 0

JBE
0 1 1 1 0 1 0 1

JNE• bit flip in conditional jump → bypass password check
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Bit flips in instruction opcode

• not just conditional jump
• other targets include:

• comparisons
• addresses of memory loads/stores

• analysis of sudo → 29 possible bit flips to bypass password check

42



Countermeasures
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Countermeasures

Different countermeasures have been proposed:

• detection vs prevention
• software vs hardware
• short-term vs long-term

44



Quick fixes

1. no clflush instruction

→
Rowhammer.js

2. increase the refresh rate

→ would need to be increased by 7×
to eliminate all bit flips

→ implementation: increased by 2×
by BIOS vendors

Errors depending on refresh
interval ([Kim+14])
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ECC

• ECC protection: server can handle or correct single bit errors

• no standard for event reporting
• in practice

• common: server counts ECC errors and report only if they reach a threshold
(e.g., > 100 bit flips / hour)

• some server vendors never report errors to the OS
• one server did not even halt when bit flips were non-correctable

Mark Lanteigne. How Rowhammer Could Be Used to Exploit Weaknesses in Computer Hardware. 2016. url:
http://www.thirdio.com/rowhammer.pdf.
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Detecting Rowhammer attacks

• Rowhammer: lots of cache misses that can be monitored with hardware
performance counters ([Her+15; Gru+16a; Chi+15; Pay16])

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)
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Preventing Rowhammer attacks in hardware (1/3)

Original ideas from [Kim+14]

• making better DRAM chips that are not vulnerable
• using error correcting codes (ECC)
• increasing the refresh rate
• remapping/retiring faulty cells after manufacturing
• identifying hammered rows at runtime and refreshing neighbors

→ expensive, performance overhead, or increased power consumption

48
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Preventing Rowhammer attacks in hardware (2/3)

PARA - Probabilistic Adjacent Row Activation ([Kim+14])

• one row closed → one adjacent row opened with low probability p

• Rowhammer: one row opened and closed a high number of times Nth

• statistically, neighbor rows are refreshed → no bit flip
• implementation at the memory controller level
• advantage: stateless → not expensive
• for p= 0.001 and Nth = 100K, experiencing one error in one year has a
probability 9.4× 10−14
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Preventing Rowhammer attacks in hardware (3/3)

Target Row Refresh (TRR)
• counter per row
• increment neighbor rows
• refresh when counter reaches a
threshold

hammer

hammer
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Preventing Rowhammer attacks in software (1/3)

MASCAT: Stopping Microarchitectural Attacks Before Execution (Irazoqui et al.)

• static analysis of the binary
• detect suspicious instruction sequences (clflush, rdtsc, fences, …)
• open problem: false positives
• since then: remote exploits from network (Lipp et al., Tatar et al.)

Gorka Irazoqui et al. “MASCAT: Stopping Microarchitectural Attacks Before Execution”. In: Cryptology ePrint Archive: Report 2016/1196 (2016).
Moritz Lipp et al. “Nethammer: Inducing Rowhammer Faults through Network Requests”. In: arXiv:1805.04956 (2018).
Andrei Tatar et al. “Throwhammer: Rowhammer Attacks over the Network and Defenses”. In: USENIX ATC 2018. 2018.
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Preventing Rowhammer attacks in software (2/3)

ANVIL
• uses performance counters to
detect rowhammer

• activate rows neighbor rows to
prevent flips

• similar as PARA, but in software

hammer

hammer

Zelalem Birhanu Aweke et al. “ANVIL: Software-based protection against next-generation rowhammer attacks”. In: ACM SIGPLAN Notices 51.4 (2016),
pp. 743–755.
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Preventing Rowhammer attacks in software (3/3)

• B-CATT: disable vulnerable physical memory
• G-CATT: isolate security domains in physical
memory based on potential vulnerability

B-CATT G-CATT

B-CATT: might block 95% of RAM
G-CATT: what about non-kernel or shared pages?
G-CATT: bit flips more than 8 “rows” apart

Ferdinand Brasser et al. “CAn’t Touch This: Practical and Generic Software-only Defenses Against Rowhammer Attacks”. In: arXiv:1611.08396 (2016).
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Conclusion

• software fault attacks are real, and can be triggered by various techniques in
various environments

• no physical access → different countermeasures than physical fault attacks
• difficult to replace hardware at a large scale → software countermeasures
are our best short-term/mid-term hope
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