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Who am I

Clémentine Maurice

• since 2017: CNRS tenured researcher, working at IRISA lab, EMSEC group
• 2016–2017: postdoc at TU Graz (Austria)
• 2012–2015: PhD (Technicolor/Eurecom)

 clementine.maurice@irisa.fr
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Scope

Everyday hardware: servers, workstations, laptops, smartphones…
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Side channels

• safe software infrastructure→ no bugs, e.g., buffer overflows

• does not mean safe execution
• information leaks because of implementation and hardware
• no “bug” in the sense of a mistake→ lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements
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Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access
→ mostly performed on embedded devices

• via the timing and micro-architecture

→ remote attacks, no physical access required
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Example: Cache attack on RSA square-and-multiply exponentiation (1/2)

mbedTLS version 2.3.0 (fixed since)

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: be mod n
X← 1
for i← bitlen(e) downto 0 do

X←multiply(X,X)
if ei = 1 then

X←multiply(X,b)
end

end
return X

6



Example: Cache attack on RSA square-and-multiply exponentiation (2/2)

• raw Prime+Probe cache trace on the buffer holding the multiplier b

• processed with a simple moving average
• allows to clearly see the bits of the exponent
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Example: Cache attack on RSA square-and-multiply exponentiation (2/2)

• raw Prime+Probe cache trace on the buffer holding the multiplier b
• processed with a simple moving average
• allows to clearly see the bits of the exponent
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Attacker model

• no physical access to the device

• can execute unprivileged code on the same machine as victim
• what are the scenarios in which this happens?

• you install some program on your machine/smartphone
• you have a virtual machine on some physical machine (cloud)
• some JavaScript runs on a web page
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Shared hardware

shared hardware

CPU

data and
instruction

cache

arithmetic
logic
unit

branch
prediction

unit

memory

memory
bus

DRAM
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Hardware: From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property
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Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”

• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…
• year: 1975→ 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html
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Background on caches



Disclaimer

• this is not boring background to maybe understand better the remainder
• we actually do really really need to understand how caches work in great
details to perform cache attacks

• pay attention and ask questions if you don’t understand something :)
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Memory

• ideal memory: zero latency, infinite capacity, zero cost, infinite bandwidth

• ideal memory requirements oppose each other
• bigger is slower→ bigger: takes longer to determine the location
• faster is more expensive→ memory technology: SRAM vs. DRAM vs. Disk
• higher bandwidth is more expensive→ need more banks, more ports, higher
frequency, or faster technology
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Memory technology: SRAM vs DRAM

DRAM: dynamic random access
memory

• slower access
• higher density (1 transistor
+ 1 capacitor per cell)

• lower cost
• charge loss over time→
requires refresh

SRAM: static random access
memory

• faster access
• lower density (6 transistors
per cell)

• higher cost
• no need for refresh
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But I want both large and fast memory!

• we can’t have both large and fast with a single level of memory

• have multiple levels of storage
• progressively bigger and slower as the levels are farther from the processor
• ensure most of the data the processor needs is kept in the fast(er) level(s)
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Memory hierarchy
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Memory hierarchy

CPU Registers L1 Cache L2 Cache L3 Cache Memory Disk storage

Data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage
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Caching basics: exploit temporal locality

• temporal locality: a program tends to reference the same memory location
many times and all within a small window of time (e.g., loops)

• anticipation: recently accessed data will be accessed again soon
• idea: store recently accessed data in automatically managed fast memory
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Caching basics: exploit spatial locality

• spatial locality: a program tends to reference a cluster of memory locations
at a time, e.g., sequential instruction access, array traversal

• anticipation: nearby data will be accessed soon
• idea: store addresses adjacent to the recently accessed one in automatically
managed fast memory

• logically divide memory into equal size blocks (lines)
• fetch to cache the accessed block in its entirety
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Manual vs automatic management

• manual: programmer manages data movement across levels
• painful for substantial programs
• only used in some embedded systems

• automatic: hardware manages data movement across levels, transparently
to the programmer

• the average programmer doesn’t need to know about it, how big it is, or how it
works to write a correct program

• what about a fast program?
• what about side channels?!
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Caching basics

• block/line: unit of storage in the cache→ memory is logically divided into
cache blocks that map to locations in the cache

• when data is referenced
• hit: if in cache, use cached data instead of accessing memory
• miss: if not in cache, bring block into cache
→ maybe have to kick something else out to do it
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Design decisions

• placement: where and how to place/find a block in cache?

• replacement: what data to remove to make room in cache?

• granularity of management: size of blocks? uniform?

• write policy: what do we do about writes?

• instructions/data: do we treat them separately?

22



Set-associative caches

Tag Index OffsetAddress

Cache
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Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address
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Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address
Several ways per set
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Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address
Several ways per set
Cache line loaded in a specific way depending on the replacement policy
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Wake-up time!

Small exercise: compute the set index of the address (1100101011111110)b
for a cache with the following design:

• 8B cache lines

→ 3 bits

• 16 cache sets

→ 4 bits

• 2 ways

Set index: (1111)b→ 15

Bonus question: what is the size of the cache? 8× 16×2= 256B
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Virtual addresses or physical addresses?

• program knows about virtual addresses, machine knows about physical
addresses

• MMU does the translation between virtual to physical address
• addresses are used for the index and the tag→ is virtual or physical used?

• trade-off depending on the level!
• 4 possibilities: VIVT, VIPT, PIPT (PIVT)
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Virtual addresses or physical addresses: VIVT

Virtually-indexed, virtually-tagged (VIVT)

• 3 fast: no need to translate addresses
• 7 aliasing issues: same virtual address maps to several different physical
addresses
→ tag is not unique→ flushing the cache on context switches
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Virtual addresses or physical addresses: VIPT

Virtually-indexed, physically-tagged (VIPT)

• needs TLB translation for the tag, but cache set can be looked up in parallel
• 3 still quite fast
• 3 avoiding aliasing if set index bits come from the page offset
→ 7 limits the size of VIPT caches (page size × # of sets)

• used e.g., in L1 on Intel
→ 4KB pages and 64B lines→ cannot have more than 26 = 64 sets

27



Virtual addresses or physical addresses: VIPT

Virtually-indexed, physically-tagged (VIPT)

• needs TLB translation for the tag, but cache set can be looked up in parallel
• 3 still quite fast
• 3 avoiding aliasing if set index bits come from the page offset

→ 7 limits the size of VIPT caches (page size × # of sets)
• used e.g., in L1 on Intel
→ 4KB pages and 64B lines→ cannot have more than 26 = 64 sets

27



Virtual addresses or physical addresses: VIPT

Virtually-indexed, physically-tagged (VIPT)

• needs TLB translation for the tag, but cache set can be looked up in parallel
• 3 still quite fast
• 3 avoiding aliasing if set index bits come from the page offset
→ 7 limits the size of VIPT caches (page size × # of sets)

• used e.g., in L1 on Intel
→ 4KB pages and 64B lines→ cannot have more than 26 = 64 sets

27



Virtual addresses or physical addresses: PIPT

Physically-indexed, physically-tagged (PIPT)

• needs TLB translation for the tag and the set index
• 7 slower because of address translation
• 3 no aliasing issues
• 3 no limit for the number of sets→ good for bigger levels
• used e.g., in L2 and L3 on Intel
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Virtual addresses or physical addresses: PIVT

Physically-indexed, virtually-tagged (PIVT)

• 7 the worst of both worlds
→ rarely used in practice
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Replacement policy

Which block in the set to replace on a cache miss?

• FIFO
• least recently used
• least frequently used
• random
• hybrid
• …
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Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU
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Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4

load

9

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp

• “perfect” LRU is complex to implement, it usually is pseudo-LRU
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Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 49

load
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• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU
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Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910

load
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• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU
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Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 11

load

12

• LRU replacement policy: oldest entry replaced first
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Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy
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• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU
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Least-Recently Used replacement policy

Potential issues with LRU?

• LRU vs. random, which one is better?
• example: 4-way cache, cyclic references to A, B, C, D, E
→ 0% hit rate with LRU policy
• set thrashing: when the ”program working set” in a set is larger than set
associativity

→ random replacement policy is better when thrashing occurs
• in practice, depends on workload, similar average hit rate for LRU and
random
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Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge
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Caches on Intel CPUs

core 0
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L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• set-associative

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive
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Manual cache maintenance (x86)

User programs can optimize cache usage:

• prefetch: suggest CPU to load data into cache
• clflush: throw out data from from all caches

based on virtual addresses

35



A few numbers for reference

On my Intel Core i5-5200U (2 cores, 4 threads)

L1d L1i L2 L3

level size 32KB 32 KB 256 KB 3MB
line size 64B 64B 64B 64B
# ways 8 8 8 12
# sets 64 64 512 4096
inclusive? no no no yes
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Latency comparison

event latency

scaled latency

1 CPU cycle 0.3 ns

1 s

level 1 cache access 0.9 ns

3 s

level 2 cache access 2.8 ns

9 s

level 3 cache access 12.9 ns

43 s

main memory access 120 ns

6 min

solid-state disk I/O 50-150 us

2-6 days

rotational disk I/O 1-10 ms

1-12 months

37



Latency comparison

event latency scaled latency

1 CPU cycle 0.3 ns 1 s
level 1 cache access 0.9 ns 3 s
level 2 cache access 2.8 ns 9 s
level 3 cache access 12.9 ns 43 s
main memory access 120 ns 6 min
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Timing differences
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Cache attacks techniques



Cache attacks

• cache attacks→ exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes
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Timing attacks

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only

• here, corner cases: hits and misses
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First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases
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Building the histogram: cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta
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Building the histogram: cache misses

Loop:

1. flush variable (clflush instruction)
2. measure time
3. access variable (always cache miss)
4. measure time
5. update histogram with delta
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Timing differences
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Finding the threshold

• as high as possible→ most cache hits are below
• no cache miss below
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How to measure time accurately? (1/3)

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]
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How to measure time accurately? (2/3)

• do you measure what you think you measure?

• out-of-order execution→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]
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How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.
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Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM
• used for both covert channels and side-channel attacks

David Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Yuval Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
Dag Arne Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Colin Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
Fangfei Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
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Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

50



Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 50



Flush+Reload: Pros and cons

Pros

fine granularity: 1 line

Cons

restrictive
1. needs clflush instruction (not

available e.g., on ARM-v7)
2. needs shared memory
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Flush+Reload: Shared memory? (1/2)

Shared library→ shared in physical memory
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Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B
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Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

Done!
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Flush+Reload: Shared memory? (2/2)

Page deduplication
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What if there is no shared memory?

There is no memory deduplication, e.g., on Amazon EC2
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Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access
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Prime+Probe: Pros and cons

Pros

less restrictive
1. no need for clflush
2. no need for shared memory
→ possible from JavaScript

Cons

coarser granularity: 1 set
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Prime+Probe in practice

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)
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Prime+Probe: Eviction set

• we need addresses that have the same set index: how do we do that?

• we want to target the L3 for cross-core attacks
• L3 for a 2-core CPU: 4096 sets, 64B-lines, 12 or 16 ways
• how many bits for the set index?
• hint hint: 4096= 212

physical address

cache tag set index line offset

12 bits 6 bits
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Prime+Probe: Eviction set

• L3 is physically indexed
→ we need to choose addresses with fixed physical address bits

• issue #1: address translation from virtual to physical is privileged

• reminder: page offset stays the same from virtual to physical address
• typical page size: 4KB→ 12 bits of page offset
• issue #2: set index bits are not included in the 12 LSB of the address

60



Prime+Probe: Eviction set

• L3 is physically indexed
→ we need to choose addresses with fixed physical address bits

• issue #1: address translation from virtual to physical is privileged
• reminder: page offset stays the same from virtual to physical address
• typical page size: 4KB→ 12 bits of page offset
• issue #2: set index bits are not included in the 12 LSB of the address

60



Prime+Probe: Eviction set

• we also have 2MB “huge pages”→ 21 bits of page offset
• set index bits are included in the 21 LSB of the address

physical address

cache tag set index line offset

2MB page offset

xxxx
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Prime+Probe: Eviction set

We know the set index

We have one more problem

• L3 is divided in slices, as many slices as cores
• I lied to you
• we always have 2048 sets per slice→ actually 11 bits for the set index
• but we need to know the slice number
• hash function takes all bits as input, including physical page number bits
→ outside the known bits from page offset
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Prime+Probe: Eviction set

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line
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Prime+Probe: Eviction set

• last-level cache→ as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:
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Prime+Probe: Eviction set

Undocumented function→ impossible to target the same set in the same slice?

Victim address space Cache Attacker address space

?

?

We reverse-engineered this function!

Clémentine Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015. 65
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Last-level cache addressing function

3 functions, depending on the number of cores

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Function valid for Sandy Bridge, Ivy Bridge, Haswell, Broadwell
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Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s
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Prime+Probe: Eviction set

• if the function is known, we can speed up the process

physical address

cache tag set index line offset

2MB page offset

xxxx

• for a CPU with c cores: 16/c addresses in the same set and slice per 2MB page

• apply same algorithm with groups of addresses instead of single addresses
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Prime+Probe

We now have an eviction set!

What about the eviction strategy?
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Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4
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Prime+Probe: Eviction strategy

Ad
dr
es

s a1
a2
a3
a4
a5
a6
a7
a8
a9

Time

with a1 . . .a9 in the same cache set
→ fast and effective on Haswell: eviction rate >99.97%
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Recap Prime+Probe

In practice, for Prime+Probe on recent processors we need:

• an eviction set, i.e., addresses in the same slice and with the same set index
→ depends on the addressing

• an eviction strategy, i.e., the order with which we access the eviction set
→ depends on the replacement policy
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Conclusion



Hardware vs. implementations

To perform a side-channel attack on some software you need both:

• shared and vulnerable hardware
• no side channel if every memory access takes the same time
• or if you cannot share the hardware component

• a vulnerable implementation
• vulnerable implementation ̸= vulnerable algorithm
• we can attack specific implementations of AES and RSA
• does not mean that AES and RSA are broken
→ not all implementations are created equal

→ hardware will most likely stay vulnerable
→ patch implementations when you can
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Take-away

Constant time is not enough…

Because an attacker can modify the internal state of the
micro-architecture
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Questions?



Step-by-step attack



Setup

• we need:
• a machine running on Linux (not virtualized)
• an Intel CPU

• I will demonstrate the steps on my machine but everything is ready so that
you can try on yours during this session

• find a lab partner if you don’t have the right setup
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Repository

• clone the repository:
git clone https://github.com/clementine-m/cache_template_attacks.git

• three folders
1. calibration
2. profiling
3. exploitation

• note: if you insist on using Windows, you can find some tools in the original
git repository https://github.com/IAIK/cache_template_attacks, but I don’t
provide any Windows assistance :)
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#1. Calibration
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Calibration

→ Learn timing of different corner cases

cd calibration
make
./calibration
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Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases
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Step 1.1. Cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta
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Step 1.2. Cache misses

Loop:

1. flush variable (clflush instruction)
2. measure time
3. access variable (always cache miss)
4. measure time
5. update histogram with delta
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Step 2: Histogram
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Step 3. Find threshold

• as high as possible
• most cache hits are below
• no cache miss below
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#2. Profiling
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What to profile

Open gedit

(Very) ugly one-liner, from the README of the repository

$ cat /proc/`ps -A | grep gedit | grep -oE "^[0-9]+"`/maps |
grep r-x | grep libgedit

If you cannot copy paste ;)

$ ps -A | grep gedit # copy pid
$ cat /proc/<pid>/maps | grep libgedit # copy line with r-xp
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What to profile

Resulting line (memory range, access rights, offset, –, –, file name)

7f6e681ea000-7f6e682c3000 r-xp 00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so
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Profiling

$ cd ../profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so

... And hold down key in the targeted program
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Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits

, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives
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Output

/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e40, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e80, 27
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20ec0, 7
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f00, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f40, 16
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f80, 13
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20fc0, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21000, 18
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21040, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21080, 3
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x210c0, 1
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#3. Exploitation
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Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440
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Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440
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Cleaning up the results

We have more than one cache hit per keystroke, in a very short time.
8588659923476: Cache Hit (167 cycles) after a pause of 1381237 cycles
8588660655587: Cache Hit (158 cycles) after a pause of 182 cycles
8588662014696: Cache Hit (142 cycles) after a pause of 388 cycles
8592435140102: Cache Hit (139 cycles) after a pause of 1254280 cycles
8592435663328: Cache Hit (152 cycles) after a pause of 120 cycles
8592436855980: Cache Hit (161 cycles) after a pause of 322 cycles
8595876762459: Cache Hit (206 cycles) after a pause of 1133098 cycles
8595877338658: Cache Hit (155 cycles) after a pause of 139 cycles
8595877386776: Cache Hit (155 cycles) after a pause of 9 cycles
8595877512170: Cache Hit (112 cycles) after a pause of 30 cycles
8595877736734: Cache Hit (152 cycles) after a pause of 57 cycles
8595878749423: Cache Hit (145 cycles) after a pause of 273 cycles
8599529228024: Cache Hit (152 cycles) after a pause of 1217393 cycles
8599529824018: Cache Hit (173 cycles) after a pause of 145 cycles
8599530032220: Cache Hit (142 cycles) after a pause of 48 cycles
8599531215638: Cache Hit (145 cycles) after a pause of 334 cycles

94



Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c

• if (kpause > 0)→ modify threshold and recompile
• no false positives with (kpause > 10000)
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Going further

• we can now obtain precise
timing for keystrokes

• you can also build a complete
matrix for each keystroke to
identify key groups

• you may want to automate
event triggering :)
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