
Introduction to micro-architectural attacks

Clémentine Maurice, CNRS, IRISA
April 30, 2019—Ben Gurion University, Israel

Who am I

Clémentine Maurice

• since 2017: CNRS tenured researcher, working at IRISA lab, EMSEC group
• 2016–2017: postdoc at TU Graz (Austria)
• 2012–2015: PhD (Technicolor/Eurecom)

 clementine.maurice@irisa.fr

2

mailto:clementine.maurice@irisa.fr

Scope

Everyday hardware: servers, workstations, laptops, smartphones…

3

Side channels

• safe software infrastructure→ no bugs, e.g., buffer overflows

• does not mean safe execution
• information leaks because of implementation and hardware
• no “bug” in the sense of a mistake→ lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Side channels

• safe software infrastructure→ no bugs, e.g., buffer overflows
• does not mean safe execution

• information leaks because of implementation and hardware
• no “bug” in the sense of a mistake→ lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Side channels

• safe software infrastructure→ no bugs, e.g., buffer overflows
• does not mean safe execution
• information leaks because of implementation and hardware
• no “bug” in the sense of a mistake→ lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Side channels

• safe software infrastructure→ no bugs, e.g., buffer overflows
• does not mean safe execution
• information leaks because of implementation and hardware
• no “bug” in the sense of a mistake→ lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access
→ mostly performed on embedded devices

• via the timing and micro-architecture

→ remote attacks, no physical access required

5

Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access
→ mostly performed on embedded devices

• via the timing and micro-architecture

→ remote attacks, no physical access required

5

Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access
→ mostly performed on embedded devices

• via the timing and micro-architecture

→ remote attacks, no physical access required

5

Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access
→ mostly performed on embedded devices

• via the timing and micro-architecture

→ remote attacks, no physical access required

5

Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access
→ mostly performed on embedded devices

• via the timing and micro-architecture
→ remote attacks, no physical access required

5

Example: Cache attack on RSA square-and-multiply exponentiation (1/2)

mbedTLS version 2.3.0 (fixed since)

Algorithm 1: Square-and-multiply exponentiation
Input: base b, exponent e, modulus n
Output: be mod n
X← 1
for i← bitlen(e) downto 0 do

X←multiply(X,X)
if ei = 1 then

X←multiply(X,b)
end

end
return X

6

Example: Cache attack on RSA square-and-multiply exponentiation (2/2)

• raw Prime+Probe cache trace on the buffer holding the multiplier b

• processed with a simple moving average
• allows to clearly see the bits of the exponent

7

Example: Cache attack on RSA square-and-multiply exponentiation (2/2)

• raw Prime+Probe cache trace on the buffer holding the multiplier b
• processed with a simple moving average

• allows to clearly see the bits of the exponent

7

Example: Cache attack on RSA square-and-multiply exponentiation (2/2)

• raw Prime+Probe cache trace on the buffer holding the multiplier b
• processed with a simple moving average
• allows to clearly see the bits of the exponent

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

7

Attacker model

• no physical access to the device

• can execute unprivileged code on the same machine as victim
• what are the scenarios in which this happens?

• you install some program on your machine/smartphone
• you have a virtual machine on some physical machine (cloud)
• some JavaScript runs on a web page

8

Attacker model

• no physical access to the device
• can execute unprivileged code on the same machine as victim

• what are the scenarios in which this happens?
• you install some program on your machine/smartphone
• you have a virtual machine on some physical machine (cloud)
• some JavaScript runs on a web page

8

Attacker model

• no physical access to the device
• can execute unprivileged code on the same machine as victim
• what are the scenarios in which this happens?

• you install some program on your machine/smartphone
• you have a virtual machine on some physical machine (cloud)
• some JavaScript runs on a web page

8

Attacker model

• no physical access to the device
• can execute unprivileged code on the same machine as victim
• what are the scenarios in which this happens?

• you install some program on your machine/smartphone
• you have a virtual machine on some physical machine (cloud)
• some JavaScript runs on a web page

8

Shared hardware

shared hardware

CPU

data and
instruction

cache

arithmetic
logic
unit

branch
prediction

unit

memory

memory
bus

DRAM

9

Hardware: From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

10

Hardware: From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%

• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

10

Hardware: From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

10

Hardware: From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels

• no documentation on this intellectual property

10

Hardware: From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

10

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”

• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…
• year: 1975→ 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

11

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975→ 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

11

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975→ 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

11

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975→ 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

11

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975→ 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

11

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975→ 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages

• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

11

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975→ 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016→ 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

11

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Background on caches

Disclaimer

• this is not boring background to maybe understand better the remainder
• we actually do really really need to understand how caches work in great
details to perform cache attacks

• pay attention and ask questions if you don’t understand something :)

12

Memory

• ideal memory: zero latency, infinite capacity, zero cost, infinite bandwidth

• ideal memory requirements oppose each other
• bigger is slower→ bigger: takes longer to determine the location
• faster is more expensive→ memory technology: SRAM vs. DRAM vs. Disk
• higher bandwidth is more expensive→ need more banks, more ports, higher
frequency, or faster technology

13

Memory

• ideal memory: zero latency, infinite capacity, zero cost, infinite bandwidth
• ideal memory requirements oppose each other

• bigger is slower→ bigger: takes longer to determine the location
• faster is more expensive→ memory technology: SRAM vs. DRAM vs. Disk
• higher bandwidth is more expensive→ need more banks, more ports, higher
frequency, or faster technology

13

Memory

• ideal memory: zero latency, infinite capacity, zero cost, infinite bandwidth
• ideal memory requirements oppose each other
• bigger is slower→ bigger: takes longer to determine the location
• faster is more expensive→ memory technology: SRAM vs. DRAM vs. Disk
• higher bandwidth is more expensive→ need more banks, more ports, higher
frequency, or faster technology

13

Memory technology: SRAM vs DRAM

DRAM: dynamic random access
memory

• slower access
• higher density (1 transistor
+ 1 capacitor per cell)

• lower cost
• charge loss over time→
requires refresh

SRAM: static random access
memory

• faster access
• lower density (6 transistors
per cell)

• higher cost
• no need for refresh

14

Memory technology: SRAM vs DRAM

DRAM: dynamic random access
memory

• slower access

• higher density (1 transistor
+ 1 capacitor per cell)

• lower cost
• charge loss over time→
requires refresh

SRAM: static random access
memory

• faster access

• lower density (6 transistors
per cell)

• higher cost
• no need for refresh

14

Memory technology: SRAM vs DRAM

DRAM: dynamic random access
memory

• slower access
• higher density (1 transistor
+ 1 capacitor per cell)

• lower cost
• charge loss over time→
requires refresh

SRAM: static random access
memory

• faster access
• lower density (6 transistors
per cell)

• higher cost
• no need for refresh

14

Memory technology: SRAM vs DRAM

DRAM: dynamic random access
memory

• slower access
• higher density (1 transistor
+ 1 capacitor per cell)

• lower cost

• charge loss over time→
requires refresh

SRAM: static random access
memory

• faster access
• lower density (6 transistors
per cell)

• higher cost

• no need for refresh

14

Memory technology: SRAM vs DRAM

DRAM: dynamic random access
memory

• slower access
• higher density (1 transistor
+ 1 capacitor per cell)

• lower cost
• charge loss over time→
requires refresh

SRAM: static random access
memory

• faster access
• lower density (6 transistors
per cell)

• higher cost
• no need for refresh

14

But I want both large and fast memory!

• we can’t have both large and fast with a single level of memory

• have multiple levels of storage
• progressively bigger and slower as the levels are farther from the processor
• ensure most of the data the processor needs is kept in the fast(er) level(s)

15

But I want both large and fast memory!

• we can’t have both large and fast with a single level of memory
• have multiple levels of storage

• progressively bigger and slower as the levels are farther from the processor
• ensure most of the data the processor needs is kept in the fast(er) level(s)

15

But I want both large and fast memory!

• we can’t have both large and fast with a single level of memory
• have multiple levels of storage
• progressively bigger and slower as the levels are farther from the processor

• ensure most of the data the processor needs is kept in the fast(er) level(s)

15

But I want both large and fast memory!

• we can’t have both large and fast with a single level of memory
• have multiple levels of storage
• progressively bigger and slower as the levels are farther from the processor
• ensure most of the data the processor needs is kept in the fast(er) level(s)

15

Memory hierarchy

16

Memory hierarchy

CPU Registers L1 Cache L2 Cache L3 Cache Memory Disk storage

Data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

17

Memory hierarchy

CPU Registers L1 Cache L2 Cache L3 Cache Memory Disk storage

Data can reside in

• CPU registers

• different levels of the CPU cache
• main memory
• disk storage

17

Memory hierarchy

CPU Registers L1 Cache L2 Cache L3 Cache Memory Disk storage

Data can reside in

• CPU registers
• different levels of the CPU cache

• main memory
• disk storage

17

Memory hierarchy

CPU Registers L1 Cache L2 Cache L3 Cache Memory Disk storage

Data can reside in

• CPU registers
• different levels of the CPU cache
• main memory

• disk storage

17

Memory hierarchy

CPU Registers L1 Cache L2 Cache L3 Cache Memory Disk storage

Data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

17

Caching basics: exploit temporal locality

• temporal locality: a program tends to reference the same memory location
many times and all within a small window of time (e.g., loops)

• anticipation: recently accessed data will be accessed again soon
• idea: store recently accessed data in automatically managed fast memory

18

Caching basics: exploit temporal locality

• temporal locality: a program tends to reference the same memory location
many times and all within a small window of time (e.g., loops)

• anticipation: recently accessed data will be accessed again soon

• idea: store recently accessed data in automatically managed fast memory

18

Caching basics: exploit temporal locality

• temporal locality: a program tends to reference the same memory location
many times and all within a small window of time (e.g., loops)

• anticipation: recently accessed data will be accessed again soon
• idea: store recently accessed data in automatically managed fast memory

18

Caching basics: exploit spatial locality

• spatial locality: a program tends to reference a cluster of memory locations
at a time, e.g., sequential instruction access, array traversal

• anticipation: nearby data will be accessed soon
• idea: store addresses adjacent to the recently accessed one in automatically
managed fast memory

• logically divide memory into equal size blocks (lines)
• fetch to cache the accessed block in its entirety

19

Caching basics: exploit spatial locality

• spatial locality: a program tends to reference a cluster of memory locations
at a time, e.g., sequential instruction access, array traversal

• anticipation: nearby data will be accessed soon

• idea: store addresses adjacent to the recently accessed one in automatically
managed fast memory

• logically divide memory into equal size blocks (lines)
• fetch to cache the accessed block in its entirety

19

Caching basics: exploit spatial locality

• spatial locality: a program tends to reference a cluster of memory locations
at a time, e.g., sequential instruction access, array traversal

• anticipation: nearby data will be accessed soon
• idea: store addresses adjacent to the recently accessed one in automatically
managed fast memory

• logically divide memory into equal size blocks (lines)
• fetch to cache the accessed block in its entirety

19

Manual vs automatic management

• manual: programmer manages data movement across levels
• painful for substantial programs
• only used in some embedded systems

• automatic: hardware manages data movement across levels, transparently
to the programmer

• the average programmer doesn’t need to know about it, how big it is, or how it
works to write a correct program

• what about a fast program?
• what about side channels?!

20

Manual vs automatic management

• manual: programmer manages data movement across levels
• painful for substantial programs
• only used in some embedded systems

• automatic: hardware manages data movement across levels, transparently
to the programmer

• the average programmer doesn’t need to know about it, how big it is, or how it
works to write a correct program

• what about a fast program?
• what about side channels?!

20

Manual vs automatic management

• manual: programmer manages data movement across levels
• painful for substantial programs
• only used in some embedded systems

• automatic: hardware manages data movement across levels, transparently
to the programmer

• the average programmer doesn’t need to know about it, how big it is, or how it
works to write a correct program

• what about a fast program?
• what about side channels?!

20

Manual vs automatic management

• manual: programmer manages data movement across levels
• painful for substantial programs
• only used in some embedded systems

• automatic: hardware manages data movement across levels, transparently
to the programmer

• the average programmer doesn’t need to know about it, how big it is, or how it
works to write a correct program

• what about a fast program?

• what about side channels?!

20

Manual vs automatic management

• manual: programmer manages data movement across levels
• painful for substantial programs
• only used in some embedded systems

• automatic: hardware manages data movement across levels, transparently
to the programmer

• the average programmer doesn’t need to know about it, how big it is, or how it
works to write a correct program

• what about a fast program?
• what about side channels?!

20

Caching basics

• block/line: unit of storage in the cache→ memory is logically divided into
cache blocks that map to locations in the cache

• when data is referenced
• hit: if in cache, use cached data instead of accessing memory
• miss: if not in cache, bring block into cache
→ maybe have to kick something else out to do it

21

Design decisions

• placement: where and how to place/find a block in cache?

• replacement: what data to remove to make room in cache?

• granularity of management: size of blocks? uniform?

• write policy: what do we do about writes?

• instructions/data: do we treat them separately?

22

Set-associative caches

Tag Index OffsetAddress

Cache

23

Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

23

Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address
Several ways per set

23

Set-associative caches

Tag Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address
Several ways per set
Cache line loaded in a specific way depending on the replacement policy

23

Wake-up time!

Small exercise: compute the set index of the address (1100101011111110)b
for a cache with the following design:

• 8B cache lines

→ 3 bits

• 16 cache sets

→ 4 bits

• 2 ways

Set index: (1111)b→ 15

Bonus question: what is the size of the cache? 8× 16×2= 256B

24

Wake-up time!

Small exercise: compute the set index of the address (1100101011111110)b
for a cache with the following design:

• 8B cache lines→ 3 bits
• 16 cache sets→ 4 bits
• 2 ways

Set index: (1111)b→ 15

Bonus question: what is the size of the cache? 8× 16×2= 256B

24

Wake-up time!

Small exercise: compute the set index of the address (1100101011111110)b
for a cache with the following design:

• 8B cache lines→ 3 bits
• 16 cache sets→ 4 bits
• 2 ways

Set index: (1111)b→ 15

Bonus question: what is the size of the cache? 8× 16×2= 256B

24

Wake-up time!

Small exercise: compute the set index of the address (1100101011111110)b
for a cache with the following design:

• 8B cache lines→ 3 bits
• 16 cache sets→ 4 bits
• 2 ways

Set index: (1111)b→ 15

Bonus question: what is the size of the cache?

8× 16×2= 256B

24

Wake-up time!

Small exercise: compute the set index of the address (1100101011111110)b
for a cache with the following design:

• 8B cache lines→ 3 bits
• 16 cache sets→ 4 bits
• 2 ways

Set index: (1111)b→ 15

Bonus question: what is the size of the cache? 8× 16×2= 256B

24

Virtual addresses or physical addresses?

• program knows about virtual addresses, machine knows about physical
addresses

• MMU does the translation between virtual to physical address
• addresses are used for the index and the tag→ is virtual or physical used?

• trade-off depending on the level!
• 4 possibilities: VIVT, VIPT, PIPT (PIVT)

25

Virtual addresses or physical addresses?

• program knows about virtual addresses, machine knows about physical
addresses

• MMU does the translation between virtual to physical address
• addresses are used for the index and the tag→ is virtual or physical used?
• trade-off depending on the level!
• 4 possibilities: VIVT, VIPT, PIPT (PIVT)

25

Virtual addresses or physical addresses: VIVT

Virtually-indexed, virtually-tagged (VIVT)

• 3 fast: no need to translate addresses
• 7 aliasing issues: same virtual address maps to several different physical
addresses
→ tag is not unique→ flushing the cache on context switches

26

Virtual addresses or physical addresses: VIVT

Virtually-indexed, virtually-tagged (VIVT)

• 3 fast: no need to translate addresses
• 7 aliasing issues: same virtual address maps to several different physical
addresses
→ tag is not unique→ flushing the cache on context switches

26

Virtual addresses or physical addresses: VIPT

Virtually-indexed, physically-tagged (VIPT)

• needs TLB translation for the tag, but cache set can be looked up in parallel
• 3 still quite fast
• 3 avoiding aliasing if set index bits come from the page offset
→ 7 limits the size of VIPT caches (page size × # of sets)

• used e.g., in L1 on Intel
→ 4KB pages and 64B lines→ cannot have more than 26 = 64 sets

27

Virtual addresses or physical addresses: VIPT

Virtually-indexed, physically-tagged (VIPT)

• needs TLB translation for the tag, but cache set can be looked up in parallel
• 3 still quite fast
• 3 avoiding aliasing if set index bits come from the page offset

→ 7 limits the size of VIPT caches (page size × # of sets)
• used e.g., in L1 on Intel
→ 4KB pages and 64B lines→ cannot have more than 26 = 64 sets

27

Virtual addresses or physical addresses: VIPT

Virtually-indexed, physically-tagged (VIPT)

• needs TLB translation for the tag, but cache set can be looked up in parallel
• 3 still quite fast
• 3 avoiding aliasing if set index bits come from the page offset
→ 7 limits the size of VIPT caches (page size × # of sets)

• used e.g., in L1 on Intel
→ 4KB pages and 64B lines→ cannot have more than 26 = 64 sets

27

Virtual addresses or physical addresses: PIPT

Physically-indexed, physically-tagged (PIPT)

• needs TLB translation for the tag and the set index
• 7 slower because of address translation
• 3 no aliasing issues
• 3 no limit for the number of sets→ good for bigger levels
• used e.g., in L2 and L3 on Intel

28

Virtual addresses or physical addresses: PIPT

Physically-indexed, physically-tagged (PIPT)

• needs TLB translation for the tag and the set index
• 7 slower because of address translation
• 3 no aliasing issues
• 3 no limit for the number of sets→ good for bigger levels
• used e.g., in L2 and L3 on Intel

28

Virtual addresses or physical addresses: PIVT

Physically-indexed, virtually-tagged (PIVT)

• 7 the worst of both worlds
→ rarely used in practice

29

Virtual addresses or physical addresses: PIVT

Physically-indexed, virtually-tagged (PIVT)

• 7 the worst of both worlds
→ rarely used in practice

29

Replacement policy

Which block in the set to replace on a cache miss?

• FIFO
• least recently used
• least frequently used
• random
• hybrid
• …

30

Replacement policy

Which block in the set to replace on a cache miss?

• FIFO
• least recently used
• least frequently used
• random
• hybrid
• …

30

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set

• LRU replacement policy: oldest entry replaced first

• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line

• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4

load

9

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp

• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 49

load

10

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910

load

11

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 11

load

12

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 11 12

load

13

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 11 1213

load

14

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 11 1213 14

load

15

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

n accesses for an n-way cache with a LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 11 1213 1415

load

16

• LRU replacement policy: oldest entry replaced first
• timestamps for every cache line
• access updates timestamp
• “perfect” LRU is complex to implement, it usually is pseudo-LRU

31

Least-Recently Used replacement policy

Potential issues with LRU?

• LRU vs. random, which one is better?
• example: 4-way cache, cyclic references to A, B, C, D, E
→ 0% hit rate with LRU policy
• set thrashing: when the ”program working set” in a set is larger than set
associativity

→ random replacement policy is better when thrashing occurs
• in practice, depends on workload, similar average hit rate for LRU and
random

32

Least-Recently Used replacement policy

Potential issues with LRU?

• LRU vs. random, which one is better?

• example: 4-way cache, cyclic references to A, B, C, D, E
→ 0% hit rate with LRU policy
• set thrashing: when the ”program working set” in a set is larger than set
associativity

→ random replacement policy is better when thrashing occurs
• in practice, depends on workload, similar average hit rate for LRU and
random

32

Least-Recently Used replacement policy

Potential issues with LRU?

• LRU vs. random, which one is better?
• example: 4-way cache, cyclic references to A, B, C, D, E

→ 0% hit rate with LRU policy
• set thrashing: when the ”program working set” in a set is larger than set
associativity

→ random replacement policy is better when thrashing occurs
• in practice, depends on workload, similar average hit rate for LRU and
random

32

Least-Recently Used replacement policy

Potential issues with LRU?

• LRU vs. random, which one is better?
• example: 4-way cache, cyclic references to A, B, C, D, E
→ 0% hit rate with LRU policy
• set thrashing: when the ”program working set” in a set is larger than set
associativity

→ random replacement policy is better when thrashing occurs

• in practice, depends on workload, similar average hit rate for LRU and
random

32

Least-Recently Used replacement policy

Potential issues with LRU?

• LRU vs. random, which one is better?
• example: 4-way cache, cyclic references to A, B, C, D, E
→ 0% hit rate with LRU policy
• set thrashing: when the ”program working set” in a set is larger than set
associativity

→ random replacement policy is better when thrashing occurs
• in practice, depends on workload, similar average hit rate for LRU and
random

32

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4

load

9

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 49

load

10

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4910

load

11

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 11

load

12

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 1112

load

13

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 13

load

14

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 1314
load

15

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Non-LRU replacement policy

n accesses for an n-way cache with a non-LRU replacement policy

cache set 2 5 8 1 7 6 3 4910 1112 1314 15
load

16

• no LRU replacement
• older entries are not necessary replaced
• switch from LRU to non-LRU from Sandy Bridge to Ivy Bridge

33

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• set-associative

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

34

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• set-associative
• L1 and L2 are private

• last-level cache
• divided in slices
• shared across cores
• inclusive

34

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• set-associative
• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

34

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• set-associative
• L1 and L2 are private
• last-level cache

• divided in slices

• shared across cores
• inclusive

34

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• set-associative
• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores

• inclusive

34

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• set-associative
• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

34

Manual cache maintenance (x86)

User programs can optimize cache usage:

• prefetch: suggest CPU to load data into cache
• clflush: throw out data from from all caches

based on virtual addresses

35

A few numbers for reference

On my Intel Core i5-5200U (2 cores, 4 threads)

L1d L1i L2 L3

level size 32KB 32 KB 256 KB 3MB
line size 64B 64B 64B 64B
ways 8 8 8 12
sets 64 64 512 4096
inclusive? no no no yes

36

Latency comparison

event latency

scaled latency

1 CPU cycle 0.3 ns

1 s

level 1 cache access 0.9 ns

3 s

level 2 cache access 2.8 ns

9 s

level 3 cache access 12.9 ns

43 s

main memory access 120 ns

6 min

solid-state disk I/O 50-150 us

2-6 days

rotational disk I/O 1-10 ms

1-12 months

37

Latency comparison

event latency scaled latency

1 CPU cycle 0.3 ns 1 s
level 1 cache access 0.9 ns 3 s
level 2 cache access 2.8 ns 9 s
level 3 cache access 12.9 ns 43 s
main memory access 120 ns 6 min
solid-state disk I/O 50-150 us 2-6 days
rotational disk I/O 1-10 ms 1-12 months

37

Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits

38

Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

38

Cache attacks techniques

Cache attacks

• cache attacks→ exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

39

Cache attacks

• cache attacks→ exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

39

Cache attacks

• cache attacks→ exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

39

Cache attacks

• cache attacks→ exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

39

Timing attacks

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only

• here, corner cases: hits and misses

40

Timing attacks

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only
• here, corner cases: hits and misses

40

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases

41

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!

4. find a threshold to distinguish the two cases

41

First step: building the histogram

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!
4. find a threshold to distinguish the two cases

41

Building the histogram: cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta

42

Building the histogram: cache misses

Loop:

1. flush variable (clflush instruction)
2. measure time
3. access variable (always cache miss)
4. measure time
5. update histogram with delta

43

Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

44

Finding the threshold

• as high as possible→ most cache hits are below
• no cache miss below

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

45

How to measure time accurately? (1/3)

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

46

How to measure time accurately? (1/3)

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

46

How to measure time accurately? (2/3)

• do you measure what you think you measure?

• out-of-order execution→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

47

How to measure time accurately? (2/3)

• do you measure what you think you measure?
• out-of-order execution

→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

47

How to measure time accurately? (2/3)

• do you measure what you think you measure?
• out-of-order execution→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

47

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

48

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

48

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

48

How to measure time accurately? (3/3)

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

48

Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM
• used for both covert channels and side-channel attacks

David Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Yuval Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
Dag Arne Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
Colin Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
Fangfei Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.

49

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

50

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

50

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

50

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

50

Cache attack: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 50

Flush+Reload: Pros and cons

Pros

fine granularity: 1 line

Cons

restrictive
1. needs clflush instruction (not

available e.g., on ARM-v7)
2. needs shared memory

51

Flush+Reload: Shared memory? (1/2)

Shared library→ shared in physical memory

52

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Processes started
independently

Process B

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

̸=

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

=

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

=

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

=

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

Done!

53

Flush+Reload: Shared memory? (2/2)

Page deduplication

Virtual Address Space
Process A

Physical Address Space

Process B

Deduplication Thread

53

What if there is no shared memory?

There is no memory deduplication, e.g., on Amazon EC2

What if there is no shared memory?

There is no memory deduplication, e.g., on Amazon EC2

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

55

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

55

Inclusive property

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

55

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

55

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

55

Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

55

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

56

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

56

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

56

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

56

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

56

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

56

Prime+Probe: Pros and cons

Pros

less restrictive
1. no need for clflush
2. no need for shared memory
→ possible from JavaScript

Cons

coarser granularity: 1 set

57

Prime+Probe in practice

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

We need:

1. an eviction set: addresses in the same set, in the same slice (issue #1 and #2)
2. an eviction strategy (issue #3)

58

Prime+Probe: Eviction set

• we need addresses that have the same set index: how do we do that?

• we want to target the L3 for cross-core attacks
• L3 for a 2-core CPU: 4096 sets, 64B-lines, 12 or 16 ways
• how many bits for the set index?
• hint hint: 4096= 212

physical address

cache tag set index line offset

12 bits 6 bits

59

Prime+Probe: Eviction set

• we need addresses that have the same set index: how do we do that?

• we want to target the L3 for cross-core attacks
• L3 for a 2-core CPU: 4096 sets, 64B-lines, 12 or 16 ways
• how many bits for the set index?
• hint hint: 4096= 212

physical address

cache tag set index line offset

12 bits 6 bits

59

Prime+Probe: Eviction set

• we need addresses that have the same set index: how do we do that?
• we want to target the L3 for cross-core attacks
• L3 for a 2-core CPU: 4096 sets, 64B-lines, 12 or 16 ways
• how many bits for the set index?

• hint hint: 4096= 212

physical address

cache tag set index line offset

12 bits 6 bits

59

Prime+Probe: Eviction set

• we need addresses that have the same set index: how do we do that?
• we want to target the L3 for cross-core attacks
• L3 for a 2-core CPU: 4096 sets, 64B-lines, 12 or 16 ways
• how many bits for the set index?
• hint hint: 4096= 212

physical address

cache tag set index line offset

12 bits 6 bits

59

Prime+Probe: Eviction set

• L3 is physically indexed
→ we need to choose addresses with fixed physical address bits

• issue #1: address translation from virtual to physical is privileged

• reminder: page offset stays the same from virtual to physical address
• typical page size: 4KB→ 12 bits of page offset
• issue #2: set index bits are not included in the 12 LSB of the address

60

Prime+Probe: Eviction set

• L3 is physically indexed
→ we need to choose addresses with fixed physical address bits

• issue #1: address translation from virtual to physical is privileged
• reminder: page offset stays the same from virtual to physical address
• typical page size: 4KB→ 12 bits of page offset
• issue #2: set index bits are not included in the 12 LSB of the address

60

Prime+Probe: Eviction set

• we also have 2MB “huge pages”→ 21 bits of page offset
• set index bits are included in the 21 LSB of the address

physical address

cache tag set index line offset

2MB page offset

xxxx

61

Prime+Probe: Eviction set

We know the set index

We have one more problem

• L3 is divided in slices, as many slices as cores
• I lied to you
• we always have 2048 sets per slice→ actually 11 bits for the set index
• but we need to know the slice number
• hash function takes all bits as input, including physical page number bits
→ outside the known bits from page offset

62

Prime+Probe: Eviction set

We know the set index

We have one more problem

• L3 is divided in slices, as many slices as cores

• I lied to you
• we always have 2048 sets per slice→ actually 11 bits for the set index
• but we need to know the slice number
• hash function takes all bits as input, including physical page number bits
→ outside the known bits from page offset

62

Prime+Probe: Eviction set

We know the set index

We have one more problem

• L3 is divided in slices, as many slices as cores
• I lied to you

• we always have 2048 sets per slice→ actually 11 bits for the set index
• but we need to know the slice number
• hash function takes all bits as input, including physical page number bits
→ outside the known bits from page offset

62

Prime+Probe: Eviction set

We know the set index

We have one more problem

• L3 is divided in slices, as many slices as cores
• I lied to you
• we always have 2048 sets per slice→ actually 11 bits for the set index
• but we need to know the slice number
• hash function takes all bits as input, including physical page number bits
→ outside the known bits from page offset

62

Prime+Probe: Eviction set

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

63

Prime+Probe: Eviction set

• last-level cache→ as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

64

Prime+Probe: Eviction set

Undocumented function→ impossible to target the same set in the same slice?

Victim address space Cache Attacker address space

?

?

We reverse-engineered this function!

Clémentine Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015. 65

Prime+Probe: Eviction set

Undocumented function→ impossible to target the same set in the same slice?

Victim address space Cache Attacker address space

?

?

We reverse-engineered this function!
Clémentine Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015. 65

Last-level cache addressing function

3 functions, depending on the number of cores

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Function valid for Sandy Bridge, Ivy Bridge, Haswell, Broadwell

66

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)

3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S

4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted

5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it

6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s

7. measure t2, the time it takes to access x→ is it evicted?
• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S

• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

If the function is unknown:

1. construct S set of addresses with the same set index
2. access reference address x ∈ S (to load it in cache)
3. iteratively access all elements of S
4. measure t1, the time it takes to access x→ it should be evicted
5. select a random address s from S and remove it
6. iteratively access all elements of S\ s
7. measure t2, the time it takes to access x→ is it evicted?

• if not→ s is part of the same set as x→ place it back into S
• if it was evicted→ s is not part of the same set as x→ discard s

67

Prime+Probe: Eviction set

• if the function is known, we can speed up the process

physical address

cache tag set index line offset

2MB page offset

xxxx

• for a CPU with c cores: 16/c addresses in the same set and slice per 2MB page

• apply same algorithm with groups of addresses instead of single addresses

68

Prime+Probe: Eviction set

• if the function is known, we can speed up the process

physical address

cache tag set index line offset

2MB page offset

xxxx

• for a CPU with c cores: 16/c addresses in the same set and slice per 2MB page
• apply same algorithm with groups of addresses instead of single addresses

68

Prime+Probe

We now have an eviction set!

What about the eviction strategy?

69

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4

load

9

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 49

load

10

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4910

load

11

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4910 11

load

12

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4910 1112

load

13

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4910 1112 13

load

14

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4910 1112 1314

load

15

70

Prime+Probe: Eviction strategy

• attacker fills a set with n addresses for a n-way cache
• if the replacement policy is LRU→ access addresses from eviction set 1 by 1
• if the replacement policy is not LRU, eviction rate < 100%
→ 75% on Haswell

cache set 2 5 8 1 7 6 3 4910 1112 1314 15

load

16

70

Prime+Probe: Eviction strategy

Ad
dr
es

s a1
a2
a3
a4
a5
a6
a7
a8
a9

Time

with a1 . . .a9 in the same cache set
→ fast and effective on Haswell: eviction rate >99.97%

71

Recap Prime+Probe

In practice, for Prime+Probe on recent processors we need:

• an eviction set, i.e., addresses in the same slice and with the same set index
→ depends on the addressing

• an eviction strategy, i.e., the order with which we access the eviction set
→ depends on the replacement policy

72

Conclusion

Hardware vs. implementations

To perform a side-channel attack on some software you need both:

• shared and vulnerable hardware
• no side channel if every memory access takes the same time
• or if you cannot share the hardware component

• a vulnerable implementation
• vulnerable implementation ̸= vulnerable algorithm
• we can attack specific implementations of AES and RSA
• does not mean that AES and RSA are broken
→ not all implementations are created equal

→ hardware will most likely stay vulnerable
→ patch implementations when you can

74

Take-away

Constant time is not enough…

Because an attacker can modify the internal state of the
micro-architecture

75

Take-away

Constant time is not enough…

Because an attacker can modify the internal state of the
micro-architecture

75

Questions?

Step-by-step attack

Setup

• we need:
• a machine running on Linux (not virtualized)
• an Intel CPU

• I will demonstrate the steps on my machine but everything is ready so that
you can try on yours during this session

• find a lab partner if you don’t have the right setup

77

Setup

• we need:
• a machine running on Linux (not virtualized)
• an Intel CPU

• I will demonstrate the steps on my machine but everything is ready so that
you can try on yours during this session

• find a lab partner if you don’t have the right setup

77

Repository

• clone the repository:
git clone https://github.com/clementine-m/cache_template_attacks.git

• three folders
1. calibration
2. profiling
3. exploitation

• note: if you insist on using Windows, you can find some tools in the original
git repository https://github.com/IAIK/cache_template_attacks, but I don’t
provide any Windows assistance :)

78

Repository

• clone the repository:
git clone https://github.com/clementine-m/cache_template_attacks.git

• three folders
1. calibration
2. profiling
3. exploitation

• note: if you insist on using Windows, you can find some tools in the original
git repository https://github.com/IAIK/cache_template_attacks, but I don’t
provide any Windows assistance :)

78

#1. Calibration

79

Calibration

→ Learn timing of different corner cases

cd calibration
make
./calibration

80

Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases

81

Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!

4. find a threshold to distinguish the two cases

81

Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!
4. find a threshold to distinguish the two cases

81

Step 1.1. Cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta

82

Step 1.2. Cache misses

Loop:

1. flush variable (clflush instruction)
2. measure time
3. access variable (always cache miss)
4. measure time
5. update histogram with delta

83

Step 2: Histogram

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

84

Step 3. Find threshold

• as high as possible
• most cache hits are below
• no cache miss below

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

85

#2. Profiling

86

What to profile

Open gedit

(Very) ugly one-liner, from the README of the repository

$ cat /proc/`ps -A | grep gedit | grep -oE "^[0-9]+"`/maps |
grep r-x | grep libgedit

If you cannot copy paste ;)

$ ps -A | grep gedit # copy pid
$ cat /proc/<pid>/maps | grep libgedit # copy line with r-xp

87

What to profile

Open gedit

(Very) ugly one-liner, from the README of the repository

$ cat /proc/`ps -A | grep gedit | grep -oE "^[0-9]+"`/maps |
grep r-x | grep libgedit

If you cannot copy paste ;)

$ ps -A | grep gedit # copy pid
$ cat /proc/<pid>/maps | grep libgedit # copy line with r-xp

87

What to profile

Resulting line (memory range, access rights, offset, –, –, file name)

7f6e681ea000-7f6e682c3000 r-xp 00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so

88

Profiling

$ cd ../profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so

... And hold down key in the targeted program

89

Profiling

$ cd ../profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so

... And hold down key in the targeted program

89

Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits

, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

90

Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

90

Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

90

Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while

Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

90

Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

90

Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

90

Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

90

Output

/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e40, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e80, 27
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20ec0, 7
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f00, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f40, 16
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f80, 13
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20fc0, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21000, 18
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21040, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21080, 3
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x210c0, 1

91

#3. Exploitation

92

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

93

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

93

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset:

lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

93

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

93

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks.

Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

93

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want.

Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

93

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

93

Exploitation

$ cd ../exploitation

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440
93

Cleaning up the results

We have more than one cache hit per keystroke, in a very short time.
8588659923476: Cache Hit (167 cycles) after a pause of 1381237 cycles
8588660655587: Cache Hit (158 cycles) after a pause of 182 cycles
8588662014696: Cache Hit (142 cycles) after a pause of 388 cycles
8592435140102: Cache Hit (139 cycles) after a pause of 1254280 cycles
8592435663328: Cache Hit (152 cycles) after a pause of 120 cycles
8592436855980: Cache Hit (161 cycles) after a pause of 322 cycles
8595876762459: Cache Hit (206 cycles) after a pause of 1133098 cycles
8595877338658: Cache Hit (155 cycles) after a pause of 139 cycles
8595877386776: Cache Hit (155 cycles) after a pause of 9 cycles
8595877512170: Cache Hit (112 cycles) after a pause of 30 cycles
8595877736734: Cache Hit (152 cycles) after a pause of 57 cycles
8595878749423: Cache Hit (145 cycles) after a pause of 273 cycles
8599529228024: Cache Hit (152 cycles) after a pause of 1217393 cycles
8599529824018: Cache Hit (173 cycles) after a pause of 145 cycles
8599530032220: Cache Hit (142 cycles) after a pause of 48 cycles
8599531215638: Cache Hit (145 cycles) after a pause of 334 cycles

94

Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c

• if (kpause > 0)→ modify threshold and recompile
• no false positives with (kpause > 10000)

95

Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c
• if (kpause > 0)→ modify threshold and recompile

• no false positives with (kpause > 10000)

95

Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c
• if (kpause > 0)→ modify threshold and recompile
• no false positives with (kpause > 10000)

95

Going further

• we can now obtain precise
timing for keystrokes

• you can also build a complete
matrix for each keystroke to
identify key groups

• you may want to automate
event triggering :)

96

Going further

• we can now obtain precise
timing for keystrokes

• you can also build a complete
matrix for each keystroke to
identify key groups

• you may want to automate
event triggering :)

96

Introduction to micro-architectural attacks

Clémentine Maurice, CNRS, IRISA
April 30, 2019—Ben Gurion University, Israel

Acknowledgments

Some slides are inspired by Onur Mutlu’s lectures on Computer Architecture

https://people.inf.ethz.ch/omutlu/lecture-videos.html

https://people.inf.ethz.ch/omutlu/lecture-videos.html

References i

David Gullasch, Endre Bangerter, and Stephan Krenn. “Cache Games – Bringing Access-Based Cache
Attacks on AES to Practice”. In: S&P’11. 2011.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. “Last-Level Cache Side-Channel
Attacks are Practical”. In: S&P’15. 2015.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In:
RAID’15. 2015.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks and Countermeasures: the Case of AES”.
In: CT-RSA 2006. 2006.

Colin Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

Yuval Yarom and Katrina Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack”. In: USENIX Security Symposium. 2014.

99

	Background on caches
	Cache attacks techniques
	Conclusion
	Step-by-step attack

