
Introduction to cache side-channel attacks

Clémentine Maurice, CNRS, IRISA
October 9, 2018—Séminaire du DIT, ENS Rennes

Who am I

• Clémentine Maurice
• Chargée de Recherche CNRS
• IRISA lab, EMSEC group
• clementine.maurice@irisa.fr
• @BloodyTangerine

2

mailto:clementine.maurice@irisa.fr
https://twitter.com/BloodyTangerine

Scope

Everyday hardware: servers, workstations, laptops, smartphones…

3

Side channels

• safe software infrastructure → no bugs, e.g., buffer overflows

• does not mean safe execution
• secrets leak because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Side channels

• safe software infrastructure → no bugs, e.g., buffer overflows
• does not mean safe execution

• secrets leak because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Side channels

• safe software infrastructure → no bugs, e.g., buffer overflows
• does not mean safe execution
• secrets leak because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Side channels

• safe software infrastructure → no bugs, e.g., buffer overflows
• does not mean safe execution
• secrets leak because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4

Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ “remote” attacks, no physical access to the device

5

Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ “remote” attacks, no physical access to the device

5

Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ “remote” attacks, no physical access to the device

5

Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ “remote” attacks, no physical access to the device

5

Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture
→ “remote” attacks, no physical access to the device

5

Shared hardware

shared hardware

CPU

data and
instruction

cache

arithmetic
logic
unit

branch
prediction

unit

memory

memory
bus

DRAM

6

From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%

• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels

• no documentation on this intellectual property

From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”

• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…
• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages

• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

Outline

• Background on cache attacks
• Reverse-engineering
• Practical attacks
• Countermeasures and open challenges
• Conclusion

9

Background on cache attacks

mov

10

mov

11

mov—What could go wrong?

• lots of exceptions for mov

• but accessing data loads it to the cache
→ side effects on computations!

12

mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

12

mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

12

Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

13

Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers

• different levels of the CPU cache
• main memory
• disk storage

13

Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache

• main memory
• disk storage

13

Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache
• main memory

• disk storage

13

Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

13

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache
• divided in slices
• shared across cores
• inclusive

14

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

14

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices

• shared across cores
• inclusive

14

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores

• inclusive

14

Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

14

Set-associative caches

Index OffsetAddress

Cache

15

Set-associative caches

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

15

Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

15

Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
15

Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits

16

Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

16

Cache attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

17

Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

17

Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

17

Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

17

Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM

D. Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Y. Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.

18

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

19

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

19

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

19

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

19

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 19

What if there is no shared memory?

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21

Inclusive property

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21

Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21

Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

22

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

22

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

22

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

22

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

22

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

22

Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

23

Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

23

Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

24

Last-level cache addressing

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

25

Prime+Probe on recent processors?

Undocumented function → impossible to target the same set in the same slice

Victim address space Cache Attacker address space

?

?

26

Reverse-engineering last-level cache

Reverse engineering method

1. find some way to map one address to one slice

2. repeat for every address with a 64B stride
3. infer a function out of it

27

Reverse engineering method

1. find some way to map one address to one slice
2. repeat for every address with a 64B stride

3. infer a function out of it

27

Reverse engineering method

1. find some way to map one address to one slice
2. repeat for every address with a 64B stride
3. infer a function out of it

27

How to map addresses to slices?

• with performance counters (Maurice et al., 2015)
• with a timing attack

• using clflush (using Gruss et al., 2016)
• using memory accesses (Yarom et al., 2015)

C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015

28

How to map addresses to slices?

• with performance counters (Maurice et al., 2015)
• with a timing attack

• using clflush (using Gruss et al., 2016)
• using memory accesses (Yarom et al., 2015)

C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015

28

Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

address

UNC_CBO_CACHE_LOOKUP 0 0 0 0

29

Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC_CBO_CACHE_LOOKUP

0x3a0071010

1 0 0 0

CBo 0

slice 0

29

Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC_CBO_CACHE_LOOKUP

0x3a0071090

1 0 1 0

CBo 2

slice 2

29

Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC_CBO_CACHE_LOOKUP

0x3a00710d0

1 0 1 1

CBo 3

slice 3

29

Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

30

Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session

3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

30

Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

30

Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

30

Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

30

Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

30

Mapping physical addresses to slices

0x3a0071010 0x3a0071050 0x3a0071090 0x3a00710d0
102

103

104

Nu
m
be

ro
f

lo
ok

up
ev
en

ts

CBo 0 CBo 1 CBo 2 CBo 3

31

Inferring the function

Two cases:

1. 2n number of cores: linear function → XORs of address bits
• solve the linear equation
• or brute force (not that long)

2. the remainder: non-linear function

32

Last-level cache linear functions

3 functions, depending on the number of cores

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Function valid for Sandy Bridge, Ivy Bridge, Haswell, Broadwell

33

Practical applications

Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine
• solution? “Just use error-correcting codes”

34

Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine

• solution? “Just use error-correcting codes”

34

Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine
• solution? “Just use error-correcting codes”

34

Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

35

Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

35

Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

35

Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

35

Our robust covert channel

• physical layer:
• transmits words as a sequence of ‘0’s and ‘1’s
• deals with synchronization errors

• data-link layer:
• divides data to transmit into packets
• corrects the remaining errors

C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017

36

Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set

• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access
• sender transmits ’1’ accessing addresses in the set

→ evicts lines of the receiver → slow access

37

Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously

• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

37

Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

37

Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access
• sender transmits ’1’ accessing addresses in the set

→ evicts lines of the receiver → slow access

37

Eviction set generation

• need a set of addresses in the same cache set and same slice

• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

38

Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

38

Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice

• without knowing which slice
→ we use a jamming agreement

38

Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

38

Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement

38

Sending the first image

39

Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack

• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

40

Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

40

Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes
• appending the number of ’0’s in the word to itself

→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

40

Synchronization (before)

41

Synchronization (after)

42

Synchronization (after)

42

Synchronization (after)

42

Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors

• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

43

Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors
• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

43

Error correction (after)

44

Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –

Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

45

Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1

Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

45

Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –

Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

45

Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

45

Building an SSH connection

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

46

SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

47

SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

47

Countermeasures

Countermeasures

• different levels: hardware, system, application
• different goals

• remove interferences
• add noise to interferences
• make it impossible to measure interferences

48

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction

→ make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged

• leaks timing information → make it constant-time
• rdtsc

• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information

→ make it constant-time
• rdtsc

• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing

→ make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture

→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)

49

Hardware level: Stop sharing hardware?

• stop sharing cache

→ attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core

→ stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core

• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores

→ stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU

• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors

→ what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud

• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

50

Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache

→ expensive, not always high performance
• disruptive prefetching: random hardware prefetches

→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

51

Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

51

Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches

→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

51

Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

51

Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost

→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

51

Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

51

System level: Prevention

• L1 cache cleansing

→ if applied to LLC → same as no cache, disastrous performance
• page coloring → reduces cache sharing

→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

52

System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

52

System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing

→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

52

System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

52

System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer

→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

52

System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

52

System level: Detect on-going attacks

• using performance counters to monitor cache hits and cache misses
→ risk of false positives

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

N. Herath et al. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In: Black Hat
2015 Briefings. 2015
D. Gruss et al. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016

53

Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015

54

Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015

54

Application level: Write better code

• no branch or data access depending on a secret
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439,
CVE-2016-7438, CVE-2018-0737, …

55

Application level: Write better code

• no branch or data access depending on a secret
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439,
CVE-2016-7438, CVE-2018-0737, …

55

Bigger perspective and conclusions

rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

56

rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel
• fadd, fmul

• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

56

jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for transactional memory support in hardware

→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016

57

jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR
• TSX instructions

• extension for transactional memory support in hardware
→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016

57

It’s not just caches!

DRAM, GPU, MMU, TLB…

P. Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
P. Frigo et al. “Grand Pwning unit: accelerating microarchitectural attacks with the GPU”. In: S&P 2018. 2018.
S. van Schaik et al. “Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder Than You Think”. In: USENIX Security

Symposium. 2018.
B. Gras et al. “Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks”. In: USENIX Security Symposium. 2018.

58

Conclusion

• more a problem of CPU design than Instruction Set Architecture

• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

59

Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache

• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

59

Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache
• hard to patch → issues linked to performance optimizations

• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

59

Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks

• very interesting and active field of research!

59

Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

59

Questions?

Contact

 clementine.maurice@irisa.fr
 @BloodyTangerine

Introduction to cache side-channel attacks

Clémentine Maurice, CNRS, IRISA
October 9, 2018—Séminaire du DIT, ENS Rennes

References i

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007.
2007.

M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. “On subnormal floating
point and abnormal timing”. In: S&P’15. 2015.

G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke. “CacheAudit: A Tool for the Static Analysis
of Cache Side Channels”. In: USENIX Security Symposium. 2013.

D. Evtyushkin and D. Ponomarev. “Covert Channels through Random Number Generator:
Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016.

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: Attacking branch predictors to
bypass ASLR”. In: MICRO’16. 2016.

P. Frigo, C. Giuffrida, H. Bos, and K. Razavi. “Grand Pwning unit: accelerating microarchitectural
attacks with the GPU”. In: S&P 2018. 2018.

62

References ii

A. Fuchs and R. B. Lee. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”.
In: SYSTOR’15. 2015.

B. Gras, K. Razavi, H. Bos, and C. Giuffrida. “Translation Leak-aside Buffer: Defeating Cache
Side-channel Protections with TLB Attacks”. In: USENIX Security Symposium. 2018.

D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive
Last-Level Caches”. In: USENIX Security Symposium. 2015.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In:
DIMVA’16. 2016.

D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games – Bringing Access-Based Cache Attacks on AES
to Practice”. In: S&P’11. 2011.

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU
Hardware Performance Counters for Security”. In: Black Hat 2015 Briefings. 2015.

G. Irazoqui, T. Eisenbarth, and B. Sunar. “Cross processor cache attacks”. In: AsiaCCS’16. 2016.

63

References iii

Y. Jang, S. Lee, and T. Kim. “Breaking kernel address space layout randomization with intel TSX”. In:
CCS’16. 2016.

J. Kong, O. Acıiçmez, J.-P. Seifert, and H. Zhou. “Hardware-software integrated approaches to defend
against software cache-based side channel attacks”. In: HPCA’09. 2009.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”.
In: S&P’15. 2015.

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel
Complex Addressing Using Performance Counters”. In: RAID’15. 2015.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Römer. “Hello
from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical
Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.

D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In:
CT-RSA 2006. 2006.

64

References iv

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

H. Raj, R. Nathuji, A. Singh, and P. England. “Resource Management for Isolation Enhanced Cloud
Services”. In: CCSW’09. 2009.

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers and Where to Find Them:
High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

S. van Schaik, K. Razavi, C. Giuffrida, and H. Bos. “Malicious Management Unit: Why Stopping Cache
Attacks in Software is Harder Than You Think”. In: USENIX Security Symposium. 2018.

B. C. Vattikonda, S. Das, and H. Shacham. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011.

Z. Wang and R. B. Lee. “New cache designs for thwarting software cache-based side channel
attacks”. In: ACM SIGARCH Computer Architecture News 35.2 (June 2007), p. 494.

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”.
In: USENIX Security Symposium. 2014.

65

References v

Y. Zhang and M. Reiter. “Düppel: retrofitting commodity operating systems to mitigate cache side
channels in the cloud”. In: CCS’13. 2013.

66

	Background on cache attacks
	Reverse-engineering last-level cache
	Practical applications
	Countermeasures
	Bigger perspective and conclusions

