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Scope

Everyday hardware: servers, workstations, laptops, smartphones…
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Side channels

• safe software infrastructure → no bugs, e.g., buffer overflows

• does not mean safe execution
• secrets leak because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements
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Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ “remote” attacks, no physical access to the device
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Shared hardware
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From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property
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Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”

• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…
• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (may. 2018): 4844 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html
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Outline

• Background on cache attacks
• Reverse-engineering
• Practical attacks
• Countermeasures and open challenges
• Conclusion
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Background on cache attacks



mov
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mov
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mov—What could go wrong?

• lots of exceptions for mov

• but accessing data loads it to the cache
→ side effects on computations!
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Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage
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Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache
• divided in slices
• shared across cores
• inclusive
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Set-associative caches

Index OffsetAddress

Cache
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Set-associative caches

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address
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Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set
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Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
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Timing differences
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Cache attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes
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Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM

D. Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Y. Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Victim address space Cache Attacker address space
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 19



What if there is no shared memory?



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed
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Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?
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Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line
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Last-level cache addressing

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

25



Prime+Probe on recent processors?

Undocumented function → impossible to target the same set in the same slice

Victim address space Cache Attacker address space

?

?
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Reverse-engineering last-level cache



Reverse engineering method

1. find some way to map one address to one slice

2. repeat for every address with a 64B stride
3. infer a function out of it
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How to map addresses to slices?

• with performance counters (Maurice et al., 2015)
• with a timing attack

• using clflush (using Gruss et al., 2016)
• using memory accesses (Yarom et al., 2015)

C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015
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Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

address

UNC_CBO_CACHE_LOOKUP 0 0 0 0
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CBo 0
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Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC_CBO_CACHE_LOOKUP

0x3a00710d0

1 0 1 1

CBo 3

slice 3
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Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

30
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Mapping physical addresses to slices

0x3a0071010 0x3a0071050 0x3a0071090 0x3a00710d0
102

103

104

Nu
m
be

ro
f

lo
ok

up
ev
en

ts

CBo 0 CBo 1 CBo 2 CBo 3
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Inferring the function

Two cases:

1. 2n number of cores: linear function → XORs of address bits
• solve the linear equation
• or brute force (not that long)

2. the remainder: non-linear function

32



Last-level cache linear functions

3 functions, depending on the number of cores

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Function valid for Sandy Bridge, Ivy Bridge, Haswell, Broadwell
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Practical applications



Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine
• solution? “Just use error-correcting codes”
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Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions
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Our robust covert channel

• physical layer:
• transmits words as a sequence of ‘0’s and ‘1’s
• deals with synchronization errors

• data-link layer:
• divides data to transmit into packets
• corrects the remaining errors

C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017
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Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set

• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access
• sender transmits ’1’ accessing addresses in the set

→ evicts lines of the receiver → slow access
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Eviction set generation

• need a set of addresses in the same cache set and same slice

• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

→ we use a jamming agreement
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Sending the first image
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Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack

• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

40
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Synchronization (before)
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Synchronization (after)

42



Synchronization (after)
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Synchronization (after)
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Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors

• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word
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Error correction (after)
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Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –

Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM
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Building an SSH connection

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket
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SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

47



SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

47



Countermeasures



Countermeasures

• different levels: hardware, system, application
• different goals

• remove interferences
• add noise to interferences
• make it impossible to measure interferences

48



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction

→ make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ there are other sources of timing
→ attacks still possible (e.g., Prime+Probe)
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Hardware level: Stop sharing hardware?

• stop sharing cache

→ attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015
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Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache

→ expensive, not always high performance
• disruptive prefetching: random hardware prefetches

→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015
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System level: Prevention

• L1 cache cleansing

→ if applied to LLC → same as no cache, disastrous performance
• page coloring → reduces cache sharing

→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.
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System level: Detect on-going attacks

• using performance counters to monitor cache hits and cache misses
→ risk of false positives

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

N. Herath et al. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In: Black Hat
2015 Briefings. 2015
D. Gruss et al. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016

53



Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015
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Application level: Write better code

• no branch or data access depending on a secret
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178, CVE-2016-7440, CVE-2016-7439,
CVE-2016-7438, CVE-2018-0737, …
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Bigger perspective and conclusions



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015
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jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for transactional memory support in hardware

→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016
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It’s not just caches!

DRAM, GPU, MMU, TLB…

P. Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
P. Frigo et al. “Grand Pwning unit: accelerating microarchitectural attacks with the GPU”. In: S&P 2018. 2018.
S. van Schaik et al. “Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder Than You Think”. In: USENIX Security

Symposium. 2018.
B. Gras et al. “Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks”. In: USENIX Security Symposium. 2018.
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Conclusion

• more a problem of CPU design than Instruction Set Architecture

• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!
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Questions?

Contact

 clementine.maurice@irisa.fr
 @BloodyTangerine



Introduction to cache side-channel attacks

Clémentine Maurice, CNRS, IRISA
October 9, 2018—Séminaire du DIT, ENS Rennes
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