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Scope

• everyday hardware: servers,
workstations, laptops,
smartphones…

• remote side-channel attacks
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Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution
• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements
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Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access
• via shared hardware and microarchitecture

→ remote attacks
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Shared hardware

shared hardware
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From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property
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Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”

• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…
• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html
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Outline

• Background on cache attacks
• Side-channel attacks on keystroke timings
• Step-by-step attack
• Countermeasures
• Conclusion
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Background on cache attacks



mov
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mov—What could go wrong?

• lots of exceptions for mov

• but accessing data loads it to the cache
→ side effects on computations!
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Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage
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Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1
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core 3

L1

L2 ring
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LLC
slice 0

LLC
slice 1

LLC
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LLC
slice 3

• L1 and L2 are private

• last-level cache
• divided in slices
• shared across cores
• inclusive
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Set-associative caches

Index OffsetAddress

Cache
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Set-associative caches

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address
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Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set
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Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
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Timing differences
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Cache attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes
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Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM

D. Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Y. Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 19



What if there is no shared memory?



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access
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Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?
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Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line
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Last-level cache addressing

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

25



Prime+Probe on recent procesors?

Undocumented function → impossible to target the same set in the same slice

Victim address space Cache Attacker address space

?

?

→ We reverse-engineered it!
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015.
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Side-channel attacks on keystroke
timings



Challenges in exploiting cache leakage

• how to locate key-dependent memory accesses?
• it’s complicated

• large binaries and libraries (third-party code)
• many libraries (gedit: 60MB)
• closed-source or unknown binaries
• self-compiled binaries

• difficult to find all exploitable addresses
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Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks

• learning phase
1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.
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Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes
Flush+Reload

AFlush+Reload A

Flush+Reload
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Profiling Phase (several events)

Cache template matrix: how many cache hits for each pair (event, address)?
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Profiling Phase (several events)

Cache template matrix: how many cache hits for each pair (event, address)?
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Exploitation phase: keystrokes

• high-resolution timers → precise inter-keystroke timing
• monitoring two addresses for keys and space
• future work: infer typed words with Hidden Markov Models
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M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016
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Exploitation phase: taps and swipes on smartphones

• distinguishing between different types of events by monitoring access time
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M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.
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Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy

• further computations are needed to derive typed words
• but the attack also allows distinguishing key groups

→ reduces search space for, e.g., password retrieval
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Step-by-step attack



Setup

• we need:
• a machine running on Linux (not virtualized)
• an Intel CPU

• I will demonstrate the steps on my machine but everything is ready so that
you can try on yours during this session

• find a lab partner if you don’t have the right setup
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Repository

• clone the repository:
git clone https://github.com/clementine-m/cache_template_attacks.git

• three folders
1. calibration
2. profiling
3. exploitation

• note: if you insist on using Windows, you can find some tools in the original
git repository https://github.com/IAIK/cache_template_attacks, but I don’t
provide any Windows assistance :)
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#1. Calibration
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Calibration

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only

cd calibration
make
./calibration
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Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases
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Step 1.1. Cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta
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Step 1.2. Cache misses

Loop:

1. measure time
2. access variable (always cache miss)
3. measure time
4. update histogram with delta
5. flush variable (clflush instruction)

40



Step 2: Accurate timings

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]
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Step 2: Accurate timings

• do you measure what you think you measure?

• out-of-order execution → what is really executed
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function()
[...]
rdtsc
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rdtsc
function()

rdtsc
rdtsc
function()
[...]
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Step 2: Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.
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Step 3: Histogram
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Step 4. Find threshold

• as high as possible
• most cache hits are below
• no cache miss below
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#2. Profiling
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What to profile

Open gedit

(Very) ugly one-liner, from the README of the repository

$ cat /proc/`ps -A | grep gedit | grep -oE "^[0-9]+"`/maps |
grep r-x | grep libgedit

If you cannot copy paste ;)

$ ps -A | grep gedit # copy pid
$ cat /proc/<pid>/maps | grep libgedit # copy line with r-xp
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What to profile

Resulting line (memory range, access rights, offset, –, –, file name)

7f6e681ea000-7f6e682c3000 r-xp 00000000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so
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Profiling

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so

... And hold down key in the targeted program
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Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits

, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives
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Output

/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e40, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e80, 27
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20ec0, 7
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f00, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f40, 16
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f80, 13
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20fc0, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21000, 18
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21040, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21080, 3
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x210c0, 1
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#3. Exploitation
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Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440
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Cleaning up the results

We have more than one cache hit per keystroke, in a very short time.
8588659923476: Cache Hit (167 cycles) after a pause of 1381237 cycles
8588660655587: Cache Hit (158 cycles) after a pause of 182 cycles
8588662014696: Cache Hit (142 cycles) after a pause of 388 cycles
8592435140102: Cache Hit (139 cycles) after a pause of 1254280 cycles
8592435663328: Cache Hit (152 cycles) after a pause of 120 cycles
8592436855980: Cache Hit (161 cycles) after a pause of 322 cycles
8595876762459: Cache Hit (206 cycles) after a pause of 1133098 cycles
8595877338658: Cache Hit (155 cycles) after a pause of 139 cycles
8595877386776: Cache Hit (155 cycles) after a pause of 9 cycles
8595877512170: Cache Hit (112 cycles) after a pause of 30 cycles
8595877736734: Cache Hit (152 cycles) after a pause of 57 cycles
8595878749423: Cache Hit (145 cycles) after a pause of 273 cycles
8599529228024: Cache Hit (152 cycles) after a pause of 1217393 cycles
8599529824018: Cache Hit (173 cycles) after a pause of 145 cycles
8599530032220: Cache Hit (142 cycles) after a pause of 48 cycles
8599531215638: Cache Hit (145 cycles) after a pause of 334 cycles
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Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c

• if (kpause > 0) → modify threshold and recompile
• no false positives with (kpause > 10000)
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Going further

• we can now obtain precise
timing for keystrokes

• you can also build a complete
matrix for each keystroke to
identify key groups

• you may want to automate
event triggering :)
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Countermeasures



Countermeasures

• different levels: hardware, system, application
• different goals

• remove interferences
• add noise to interferences
• make it impossible to measure interferences
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Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction

→ make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)
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Hardware level: Stop sharing hardware?

• stop sharing cache

→ attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015
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Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache

→ expensive, not always high performance
• disruptive prefetching: random hardware prefetches

→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015
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System level: Prevention

• L1 cache cleansing

→ if applied to LLC → same as no cache, disastrous performance
• page coloring → reduces cache sharing

→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.
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System level: Detect on-going attacks

• using performance counters to monitor cache hits and cache misses
→ risk of false positives

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

N. Herath et al. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In: Black Hat
2015 Briefings. 2015
D. Gruss et al. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016
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Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015
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Application level: Write better code

• square-and-multiply-always algorithm
• bit-sliced AES implementation
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178
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Bigger perspective and conclusions



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015
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jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for transactional memory support in hardware

→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016
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It’s not just caches!

• DRAM
• GPU
• MMU
• TLB

P. Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
P. Frigo et al. “Grand Pwning unit: accelerating microarchitectural attacks with the GPU”. In: S&P 2018. 2018.
S. van Schaik et al. “Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder Than You Think”. In: USENIX Security

Symposium. 2018.
B. Gras et al. “Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks”. In: USENIX Security Symposium. 2018.
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Conclusion

• more a problem of CPU design than Instruction Set Architecture

• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!
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Questions?

Contact

 clementine.maurice@irisa.fr
 @BloodyTangerine



Cache side-channel attacks
Lab: Monitoring keystroke timing with no privilege

Clémentine Maurice, CNRS, IRISA
July 13, 2018—Summer School Cyber in Occitanie 2018, Montpellier, France
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