
Cache side-channel attacks
Lab: Monitoring keystroke timing with no privilege

Clémentine Maurice, CNRS, IRISA
July 13, 2018—Summer School Cyber in Occitanie 2018, Montpellier, France



Who am I

• Clémentine Maurice
• Full-time CNRS researcher (Chargée de Recherche)
• IRISA lab, EMSEC group
•  clementine.maurice@irisa.fr
•  @BloodyTangerine

2

mailto:clementine.maurice@irisa.fr
https://twitter.com/BloodyTangerine


Scope

• everyday hardware: servers,
workstations, laptops,
smartphones…

• remote side-channel attacks

3



Scope

• everyday hardware: servers,
workstations, laptops,
smartphones…

• remote side-channel attacks

3



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution
• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed
• does not mean safe execution

• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed
• does not mean safe execution
• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed
• does not mean safe execution
• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access
• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access
• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture
→ remote attacks

5



Shared hardware

shared hardware

CPU

data and
instruction

cache

arithmetic
logic
unit

branch
prediction

unit

memory

memory
bus

DRAM

6



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%

• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels

• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

2017 Kaby Lake

2018 Coffee Lake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”

• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…
• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages

• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors
• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Outline

• Background on cache attacks
• Side-channel attacks on keystroke timings
• Step-by-step attack
• Countermeasures
• Conclusion

9



Background on cache attacks



mov

10



mov

11



mov—What could go wrong?

• lots of exceptions for mov

• but accessing data loads it to the cache
→ side effects on computations!

12



mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

12



mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

12



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers

• different levels of the CPU cache
• main memory
• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache

• main memory
• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache
• main memory

• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

13



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache
• divided in slices
• shared across cores
• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices

• shared across cores
• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores

• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

14



Set-associative caches

Index OffsetAddress

Cache

15



Set-associative caches

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

15



Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

15



Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
15



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits

16



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

16



Cache attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

17



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

17



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

17



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs
• side-channel attack: one malicious process spies on benign processes

• e.g., steals crypto keys, spies on keystrokes

17



Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM

D. Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Y. Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.

18



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 19



What if there is no shared memory?



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21



Inclusive property

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21



Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

21



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

22



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

22



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

22



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

22



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

22



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

22



Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

23



Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

23



Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

24



Last-level cache addressing

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

25



Prime+Probe on recent procesors?

Undocumented function → impossible to target the same set in the same slice

Victim address space Cache Attacker address space

?

?

→ We reverse-engineered it!
C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015.

26



Side-channel attacks on keystroke
timings



Challenges in exploiting cache leakage

• how to locate key-dependent memory accesses?
• it’s complicated

• large binaries and libraries (third-party code)
• many libraries (gedit: 60MB)
• closed-source or unknown binaries
• self-compiled binaries

• difficult to find all exploitable addresses

27



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks

• learning phase
1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

28



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

28



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped

2. trigger an event while Flush+Reload one address
→ cache hit: address used by the library/executable

3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

28



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

28



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable

3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

28



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

28



Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes
Flush+Reload

AFlush+Reload A

Flush+Reload

29



Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes
Flush+Reload

AFlush+Reload A

Flush+Reload

29



Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes
Flush+Reload

AFlush+Reload A

Flush+Reload

29



Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes

Step 2: Attacker triggers an event, checks cache hit, flushes the line

Flush+Reload

AFlush+Reload A

Flush+Reload

29



Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes

Step 2: Attacker triggers an event, checks cache hit, flushes the line

Flush+Reload

Step 3: Repeat for same pair (eventi, addressj) and update cache hit count

AFlush+Reload A

Flush+Reload

29



Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes

Step 2: Attacker triggers an event, checks cache hit, flushes the line

Flush+Reload

Step 3: Repeat for same pair (eventi, addressj) and update cache hit count

AFlush+Reload

Step 4: Repeat for next pair (eventi, addressj+1), …

A

Flush+Reload

29



Profiling Phase (one event)

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache), cache is empty

A

cached cached

Step 2: Attacker triggers an event

measures time

Step 2: Attacker triggers an event, checks cache hit

flushes

Step 2: Attacker triggers an event, checks cache hit, flushes the line

Flush+Reload

Step 3: Repeat for same pair (eventi, addressj) and update cache hit count

AFlush+Reload

Step 4: Repeat for next pair (eventi, addressj+1), …

A

Flush+Reload

29



Profiling Phase (several events)

Cache template matrix: how many cache hits for each pair (event, address)?

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

30



Profiling Phase (several events)

Cache template matrix: how many cache hits for each pair (event, address)?

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

Many cache hits

30



Profiling Phase (several events)

Cache template matrix: how many cache hits for each pair (event, address)?

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

Many cache hits

No cache hits

30



Exploitation phase: keystrokes

• high-resolution timers → precise inter-keystroke timing
• monitoring two addresses for keys and space
• future work: infer typed words with Hidden Markov Models

0 1 2 3 4 5 6 7

100

200

300

t h i s Space i s Space a Space m e s s a g e

Time in seconds

Ac
ce
ss

tim
e Key Space

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016

31



Exploitation phase: taps and swipes on smartphones

• distinguishing between different types of events by monitoring access time

0 2 4 6 8 10 12 14 16 18

50

100

150

200

Tap Tap Tap Swipe Swipe Swipe Tap Tap Tap Swipe Swipe

Time in seconds

Ac
ce
ss

tim
e

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

32



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy

• further computations are needed to derive typed words
• but the attack also allows distinguishing key groups

→ reduces search space for, e.g., password retrieval

33



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy
• further computations are needed to derive typed words

• but the attack also allows distinguishing key groups
→ reduces search space for, e.g., password retrieval

33



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy
• further computations are needed to derive typed words
• but the attack also allows distinguishing key groups

→ reduces search space for, e.g., password retrieval

33



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy
• further computations are needed to derive typed words
• but the attack also allows distinguishing key groups

→ reduces search space for, e.g., password retrieval

33



Step-by-step attack



Setup

• we need:
• a machine running on Linux (not virtualized)
• an Intel CPU

• I will demonstrate the steps on my machine but everything is ready so that
you can try on yours during this session

• find a lab partner if you don’t have the right setup

34



Setup

• we need:
• a machine running on Linux (not virtualized)
• an Intel CPU

• I will demonstrate the steps on my machine but everything is ready so that
you can try on yours during this session

• find a lab partner if you don’t have the right setup

34



Repository

• clone the repository:
git clone https://github.com/clementine-m/cache_template_attacks.git

• three folders
1. calibration
2. profiling
3. exploitation

• note: if you insist on using Windows, you can find some tools in the original
git repository https://github.com/IAIK/cache_template_attacks, but I don’t
provide any Windows assistance :)

35



Repository

• clone the repository:
git clone https://github.com/clementine-m/cache_template_attacks.git

• three folders
1. calibration
2. profiling
3. exploitation

• note: if you insist on using Windows, you can find some tools in the original
git repository https://github.com/IAIK/cache_template_attacks, but I don’t
provide any Windows assistance :)

35



#1. Calibration

36



Calibration

How every timing attack works:

• learn timing of different corner cases
• later, we recognize these corner cases by timing only

cd calibration
make
./calibration

37



Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)

3. we have a histogram!
4. find a threshold to distinguish the two cases

38



Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!

4. find a threshold to distinguish the two cases

38



Steps

1. build two cases: cache hits and cache misses
2. time each case many times (get rid of noise)
3. we have a histogram!
4. find a threshold to distinguish the two cases

38



Step 1.1. Cache hits

Loop:

1. measure time
2. access variable (always cache hit)
3. measure time
4. update histogram with delta

39



Step 1.2. Cache misses

Loop:

1. measure time
2. access variable (always cache miss)
3. measure time
4. update histogram with delta
5. flush variable (clflush instruction)

40



Step 2: Accurate timings

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

41



Step 2: Accurate timings

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

41



Step 2: Accurate timings

• do you measure what you think you measure?

• out-of-order execution → what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

42



Step 2: Accurate timings

• do you measure what you think you measure?
• out-of-order execution

→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

42



Step 2: Accurate timings

• do you measure what you think you measure?
• out-of-order execution → what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

42



Step 2: Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

43



Step 2: Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

43



Step 2: Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

43



Step 2: Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

43



Step 3: Histogram

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

44



Step 4. Find threshold

• as high as possible
• most cache hits are below
• no cache miss below

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

45



#2. Profiling

46



What to profile

Open gedit

(Very) ugly one-liner, from the README of the repository

$ cat /proc/`ps -A | grep gedit | grep -oE "^[0-9]+"`/maps |
grep r-x | grep libgedit

If you cannot copy paste ;)

$ ps -A | grep gedit # copy pid
$ cat /proc/<pid>/maps | grep libgedit # copy line with r-xp

47



What to profile

Open gedit

(Very) ugly one-liner, from the README of the repository

$ cat /proc/`ps -A | grep gedit | grep -oE "^[0-9]+"`/maps |
grep r-x | grep libgedit

If you cannot copy paste ;)

$ ps -A | grep gedit # copy pid
$ cat /proc/<pid>/maps | grep libgedit # copy line with r-xp

47



What to profile

Resulting line (memory range, access rights, offset, –, –, file name)

7f6e681ea000-7f6e682c3000 r-xp 00000000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

48



Profiling

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so

... And hold down key in the targeted program

49



Profiling

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
00000000 fd:01 6423718
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so

... And hold down key in the targeted program

49



Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits

, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

50



Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

50



Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

50



Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while

Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

50



Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

50



Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

50



Profiling (a tiny bit faster)

You are probably not seeing a lot of cache hits, or any

We are searching for hits from offset 0 of the library
→ nothing handles keystrokes there

Normally, run the template attack on the whole library but takes a while
Let’s start from a different offset, skipping all non executable parts

$ sleep 3; ./profiling 200 7f6e681ea000-7f6e682c3000 r-xp
20000 fd:01 6423718 /usr/lib/x86_64-linux-gnu/gedit/libgedit.so

Save offsets with many cache hits!

Ideally, start the profiling without triggering any event to eliminate false positives

50



Output

/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e40, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20e80, 27
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20ec0, 7
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f00, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f40, 16
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20f80, 13
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x20fc0, 10
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21000, 18
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21040, 15
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x21080, 3
/usr/lib/x86_64-linux-gnu/gedit/libgedit.so, 0x210c0, 1

51



#3. Exploitation

52



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

53



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

53



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset:

lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

53



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

53



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks.

Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

53



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want.

Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

53



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440

53



Exploitation

$ cd profiling

Change value of #define MIN_CACHE_MISS_CYCLES to your threshold

$ make
$ ./spy <file> <offset>

Let’s try some offset: lots of cache hits for 0x20c40!!!

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x20c40

A cache hit each time the cursor blinks. Not what we want. Let’s try another one

./spy /usr/lib/x86_64-linux-gnu/gedit/libgedit.so 0x24440
53



Cleaning up the results

We have more than one cache hit per keystroke, in a very short time.
8588659923476: Cache Hit (167 cycles) after a pause of 1381237 cycles
8588660655587: Cache Hit (158 cycles) after a pause of 182 cycles
8588662014696: Cache Hit (142 cycles) after a pause of 388 cycles
8592435140102: Cache Hit (139 cycles) after a pause of 1254280 cycles
8592435663328: Cache Hit (152 cycles) after a pause of 120 cycles
8592436855980: Cache Hit (161 cycles) after a pause of 322 cycles
8595876762459: Cache Hit (206 cycles) after a pause of 1133098 cycles
8595877338658: Cache Hit (155 cycles) after a pause of 139 cycles
8595877386776: Cache Hit (155 cycles) after a pause of 9 cycles
8595877512170: Cache Hit (112 cycles) after a pause of 30 cycles
8595877736734: Cache Hit (152 cycles) after a pause of 57 cycles
8595878749423: Cache Hit (145 cycles) after a pause of 273 cycles
8599529228024: Cache Hit (152 cycles) after a pause of 1217393 cycles
8599529824018: Cache Hit (173 cycles) after a pause of 145 cycles
8599530032220: Cache Hit (142 cycles) after a pause of 48 cycles
8599531215638: Cache Hit (145 cycles) after a pause of 334 cycles

54



Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c

• if (kpause > 0) → modify threshold and recompile
• no false positives with (kpause > 10000)

55



Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c
• if (kpause > 0) → modify threshold and recompile

• no false positives with (kpause > 10000)

55



Cleaning up the results

• have a look at the flushandreload(void* addr) function in spy.c
• if (kpause > 0) → modify threshold and recompile
• no false positives with (kpause > 10000)

55



Going further

• we can now obtain precise
timing for keystrokes

• you can also build a complete
matrix for each keystroke to
identify key groups

• you may want to automate
event triggering :)

56



Going further

• we can now obtain precise
timing for keystrokes

• you can also build a complete
matrix for each keystroke to
identify key groups

• you may want to automate
event triggering :)

56



Countermeasures



Countermeasures

• different levels: hardware, system, application
• different goals

• remove interferences
• add noise to interferences
• make it impossible to measure interferences

57



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction

→ make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged

• leaks timing information → make it constant-time
• rdtsc

• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information

→ make it constant-time
• rdtsc

• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing

→ make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture

→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

58



Hardware level: Stop sharing hardware?

• stop sharing cache

→ attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core

→ stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core

• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores

→ stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU

• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors

→ what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud

• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

59



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache

→ expensive, not always high performance
• disruptive prefetching: random hardware prefetches

→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

60



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

60



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches

→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

60



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

60



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost

→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

60



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

60



System level: Prevention

• L1 cache cleansing

→ if applied to LLC → same as no cache, disastrous performance
• page coloring → reduces cache sharing

→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

61



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

61



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing

→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

61



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

61



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer

→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

61



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

61



System level: Detect on-going attacks

• using performance counters to monitor cache hits and cache misses
→ risk of false positives

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

N. Herath et al. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In: Black Hat
2015 Briefings. 2015
D. Gruss et al. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016

62



Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015

63



Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015

63



Application level: Write better code

• square-and-multiply-always algorithm
• bit-sliced AES implementation
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178

64



Application level: Write better code

• square-and-multiply-always algorithm
• bit-sliced AES implementation
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178

64



Bigger perspective and conclusions



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

65



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel
• fadd, fmul

• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

65



jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for transactional memory support in hardware

→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016

66



jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR
• TSX instructions

• extension for transactional memory support in hardware
→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016

66



It’s not just caches!

• DRAM
• GPU
• MMU
• TLB

P. Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.
P. Frigo et al. “Grand Pwning unit: accelerating microarchitectural attacks with the GPU”. In: S&P 2018. 2018.
S. van Schaik et al. “Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder Than You Think”. In: USENIX Security

Symposium. 2018.
B. Gras et al. “Translation Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks”. In: USENIX Security Symposium. 2018.

67



Conclusion

• more a problem of CPU design than Instruction Set Architecture

• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

68



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache

• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

68



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache
• hard to patch → issues linked to performance optimizations

• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

68



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks

• very interesting and active field of research!

68



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• it’s also not just the cache
• hard to patch → issues linked to performance optimizations
• we would like to keep the optimizations without the attacks
• very interesting and active field of research!

68



Questions?

Contact

 clementine.maurice@irisa.fr
 @BloodyTangerine



Cache side-channel attacks
Lab: Monitoring keystroke timing with no privilege

Clémentine Maurice, CNRS, IRISA
July 13, 2018—Summer School Cyber in Occitanie 2018, Montpellier, France



References i

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007.
2007.

M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and H. Shacham. “On subnormal floating
point and abnormal timing”. In: S&P’15. 2015.

G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke. “CacheAudit: A Tool for the Static Analysis
of Cache Side Channels”. In: USENIX Security Symposium. 2013.

D. Evtyushkin and D. Ponomarev. “Covert Channels through Random Number Generator:
Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016.

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. “Jump over ASLR: Attacking branch predictors to
bypass ASLR”. In: MICRO’16. 2016.

P. Frigo, C. Giuffrida, H. Bos, and K. Razavi. “Grand Pwning unit: accelerating microarchitectural
attacks with the GPU”. In: S&P 2018. 2018.

71



References ii

A. Fuchs and R. B. Lee. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”.
In: SYSTOR’15. 2015.

B. Gras, K. Razavi, H. Bos, and C. Giuffrida. “Translation Leak-aside Buffer: Defeating Cache
Side-channel Protections with TLB Attacks”. In: USENIX Security Symposium. 2018.

D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive
Last-Level Caches”. In: USENIX Security Symposium. 2015.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard. “Flush+Flush: A Fast and Stealthy Cache Attack”. In:
DIMVA’16. 2016.

D. Gullasch, E. Bangerter, and S. Krenn. “Cache Games – Bringing Access-Based Cache Attacks on AES
to Practice”. In: S&P’11. 2011.

N. Herath and A. Fogh. “These are Not Your Grand Daddys CPU Performance Counters – CPU
Hardware Performance Counters for Security”. In: Black Hat 2015 Briefings. 2015.

G. Irazoqui, T. Eisenbarth, and B. Sunar. “Cross processor cache attacks”. In: AsiaCCS’16. 2016.

72



References iii

Y. Jang, S. Lee, and T. Kim. “Breaking kernel address space layout randomization with intel TSX”. In:
CCS’16. 2016.

J. Kong, O. Acıiçmez, J.-P. Seifert, and H. Zhou. “Hardware-software integrated approaches to defend
against software cache-based side channel attacks”. In: HPCA’09. 2009.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”.
In: S&P’15. 2015.

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel
Complex Addressing Using Performance Counters”. In: RAID’15. 2015.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical
Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.

D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES”. In:
CT-RSA 2006. 2006.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

73



References iv

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security Symposium. 2016.

H. Raj, R. Nathuji, A. Singh, and P. England. “Resource Management for Isolation Enhanced Cloud
Services”. In: CCSW’09. 2009.

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers and Where to Find Them:
High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

S. van Schaik, K. Razavi, C. Giuffrida, and H. Bos. “Malicious Management Unit: Why Stopping Cache
Attacks in Software is Harder Than You Think”. In: USENIX Security Symposium. 2018.

B. C. Vattikonda, S. Das, and H. Shacham. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011.

Z. Wang and R. B. Lee. “New cache designs for thwarting software cache-based side channel
attacks”. In: ACM SIGARCH Computer Architecture News 35.2 (June 2007), p. 494.

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”.
In: USENIX Security Symposium. 2014.

74



References v

Y. Zhang and M. Reiter. “Düppel: retrofitting commodity operating systems to mitigate cache side
channels in the cloud”. In: CCS’13. 2013.

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile
Devices”. In: USENIX Security Symposium. 2016.

75


	Background on cache attacks
	Side-channel attacks on keystroke timings
	Step-by-step attack
	Countermeasures
	Bigger perspective and conclusions

