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Attacks on micro-architecture

Number of accesses

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations
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From small optimizations...

2008 @ Nehalem

2012 @ Sandy Bridge

2013 @ Ivy Bridge - new microarchitectures yearly

201 @ Haswell - performance improvement ~ 5%

2015 @ Broaduwell - very small optimizations: caches, branch
2016 @ Skylake prediction...

2017 @ Kaby Lake

2018 @ Coffee Lake



... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations



... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations

- several processes are sharing microarchitectural components



... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations
- several processes are sharing microarchitectural components

- attacker infers information from a victim process via hardware usage



... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations
- several processes are sharing microarchitectural components
- attacker infers information from a victim process via hardware usage

- pure-software attacks by unprivileged processes



... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations

- several processes are sharing microarchitectural components

- attacker infers information from a victim process via hardware usage
- pure-software attacks by unprivileged processes

- sequences of benign-looking actions — hard to detect
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From theoretical to practical cache attacks

- first theoretical attack in 1996 by Kocher
- first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik et al.

- renewed interest for the field in 2014 after Flush+Reload by Yarom and
Falkner

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES". In: CT-RSA 2006. 2006.

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.



Hyper-threading: Same-core attacks

threads sharing one core share resources: L1, L2 cache, branch predictor
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Possible side channels using

components shared by a core?

Stop sharing a core!
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Set-associative caches

0 16 17 2526 El
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Cache set
e I
4
Cache line —+—7
Cache

Data loaded in a specific set depending on its address
Several ways per set

Cache line loaded in a specific way depending on the replacement policy
10
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Cache attacks

- caches improve performance

- SRAM is expensive — small caches
- different timings for memory accesses

1. data is cached — cache hit — fast
2. data is not cached — cache miss — slow

- cache attacks leverage this timing difference

"



Timing differences
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Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

13



Cache attacks: Flush+Reload

cached

Cacheq

|/

T — —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

13



Cache attacks: Flush+Reload

flushes

T — —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

13



Cache attacks: Flush+Reload

loads data

—

Victim address space Cache Attacker address space
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Cache attacks: Flush+Reload

reloags data
Victim address space Cache

Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

Step 4: Attacker reloads the data 13



Flush+Reload: Applications

- cross-VM side channel attacks on crypto algorithms

RSA: 96.7% of secret key bits in a single signature
- AES: full key recovery in 30000 dec. (a few seconds)

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014

B. Gulmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES". In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2015

D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium.
2015

https://github.com/IAIK/cache_template_attacks
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Flush+Reload: Applications

- cross-VM side channel attacks on crypto algorithms

RSA: 96.7% of secret key bits in a single signature
- AES: full key recovery in 30000 dec. (a few seconds)

- Cache Template Attacks: automatically finds information leakage
— side channel on keystrokes and AES T-tables implementation

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014
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Flush+Reload: Pros and cons

- fine granularity: 1 cache line (64 Bytes)
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Flush+Reload: Pros and cons

- fine granularity: 1 cache line (64 Bytes)
- but requires shared memory

— memory deduplication between VMs

15



Easy solution #2

Possible side channels using
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Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!
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Inclusive property
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- Inclusive LLC: superset of L1 and L2
- data evicted from the LLC is also

evicted from L1 and L2

- a core can evict lines in the private 11

of another core
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Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed



Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?



Last-level cache addressing
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Last-level cache addressing

- last-level cache — as many slices as cores
- undocumented hash function that maps a physical address to a slice

- designed for performance

physical address slice (0o, ...,0r_1)

R <l; .
FOp2islices: 30 bits k bits

21



Prime+Probe on recent procesors?

Undocumented function — impossible to target a set

Victim address space Cache Attacker address space

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID'15. 2015
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Prime+Probe on recent procesors?

Undocumented function — impossible to target a set

Victim address space Cache Attacker address space

— We reverse-engineered the function!

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID'15. 2015
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Prime+Probe: Applications

- cross-VM side channel attacks on crypto algorithms:
El Gamal (sliding window): full key recovery in 12 min.

- tracking user behavior in the browser, in JavaScript

- covert channels between virtual machines in the cloud

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P'15. 2015.
Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”.
In: CCS"15. 2015.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Romer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS'17. to appear. 2017.
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Easy solution #3

Possible side channels using

components shared by a CPU?
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Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?
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Recent advances

Building practical attacks
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Covert channels in the cloud

- covert channel: two processes communicating with each other
- not allowed to do so, e.g.,, across VMs
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Covert channels in the cloud

- covert channel: two processes communicating with each other
- not allowed to do so, e.g.,, across VMs

- literature: stops working with noise on the machine

- solution? “Just use error-correcting codes”
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Why can’t we just use error correcting codes?

sender [1]oJo[1]1]0]

Receiver ’1[0[0[1[1[0‘

B ——

(a) Transmission without errors
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Why can’t we just use error correcting codes?

sender [1]0[o]1]1]0] senger [1To]o]1]1]0]
vecener [1[0]0[1]7]0] vecener [TTTT0]1]1]0]
(a) Transmission without errors (b) Noise: substitution error
sender (107711 0] sender [1T0]o]1[1]0]
vecener [1T0[o]0]o o [1]7]0] vecener [0 7770]
(C) Sender descheduled: insertions (d) Receiver desched;[e;i:éeztions

27



Our robust covert channel

- physical layer:
- transmits words as a sequence of ‘0’s and 1's
- deals with synchronization errors

- data-link layer:

- divides data to transmit into packets
- corrects the remaining errors

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Romer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS'17. to appear. 2017

28



Physical layer: Sending ‘0’s and “1's

- sender and receiver agree on one set
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Physical layer: Sending ‘0’s and “1's

- sender and receiver agree on one set
- receiver probes the set continuously
- sender transmits ‘0" doing nothing
— lines of the receiver still in cache — fast access

- sender transmits 1" accessing addresses in the set
— evicts lines of the receiver — slow access

29



Eviction set generation

- need a set of addresses in the same cache set and same slice
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Eviction set generation

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

cache set cache line
cache tag index offset

physical address 1OXXXX ;

2MB page offset

- we can build a set of addresses in the same cache set and same slice
- without knowing which slice
— We use a jamming agreement

30



Sending the first image
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Handling synchronization errors

Physical layer word Data

12 bits
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Handling synchronization errors

- deletion errors: request-to-send scheme that also serves as ack

- 3-bit sequence number
- request: encoded sequence number (7 bits)

Physical layer word Data | SQN ‘

12 bits 3 bits
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Handling synchronization errors

- deletion errors: request-to-send scheme that also serves as ack
- 3-bit sequence number
- request: encoded sequence number (7 bits)

- '0’-insertion errors: error detection code — Berger codes

- appending the number of '0’s in the word to itself
— property: a word cannot consist solely of '0’s

Physical layer word Data | SQN | EDC ‘

12 bits 3 bits 4 bits
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Synchronization (before)
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Synchronization (after)
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Data-link layer: Error correction

- Reed-Solomon codes to correct the remaining errors
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Data-link layer: Error correction

- Reed-Solomon codes to correct the remaining errors

- RS word size = physical layer word size = 12 bits

- packet size = 22 — 1= 4095 RS words

- 10% error-correcting code: 409 parity and 3686 data RS words

3686 RS-words 409 RS-words
Data-link layer packet | | | | | | Data "
Physical layer word ‘ Data | SQN | EDC ‘
12 bits 3bits 4 bits
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Error correction (after)
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Evaluation
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Native 75.10 KBps 0.00% -
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Evaluation

Environment Bit rate  Error rate  Noise

Native 75.10 KBps 0.00% -

Native 36.03 KBps 0.00% stress -m 1

Amazon EC2  45.25KBps 0.00% -

Amazon EC2  45.09KBps 0.00% web server serving files on sender VM

Amazon EC2  42.96 KBps 0.00% stress -m 2 onsender VM

Amazon EC2  42.26 KBps 0.00% stress -m 1 on receiver VM

Amazon EC2 37.42 KBps 0.00% web serveronall 3VMs, stress -m 4 on 3rd
VM, stress -m 1onsenderand receiver VMs

Amazon EC2  34.27KBps 0.00% stress -m 8 on third VM
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Building an SSH connection

VM 1 VM 2

== = === === === === = = | == o = = = = = = - = = = == = = 1
1 TCP Client 1! TCP Server 1
1 (e.g. ssh) 1! (e.g. sshd) 1
1 A 1! A 1
1 . Socket P! Socket a 1
1 ' o ' |
|| TCP«File || || TCP«File ||
! [ 1
1 I File System ! File System I 1
1 1! 1
1 Covert Channel || 1 Covert Channel ||
e AR R R A= = = == === h loocoooooog A= = = === == ]
| Hypervisor |

Prime+Probe Prime+Probe o

[ e Last Level Cache (LLC) |
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SSH evaluation

Between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v
Web server on SSH server VM v
Web server on all VMs v

stress -m 1 on server side unstable
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SSH evaluation

Between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v
Web server on SSH server VM v
Web server on all VMs v

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

39



Recent advances

Increasing the attack surface
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Increasing the attack surface

Not just caches: also DRAM, MMU, TLB, GPUs...

+ DRAM [Pessl et al., DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks (USENIX
Security 2016)]

+ GPU [Frigo et al,, Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU
(S&P 2018)]

+ MMU [van Schaik et al., Malicious Management Unit: Why Stopping Cache Attacks in Software
is Harder Than You Think (USENIX Security 2018)]

+ TLB [Gras et al,, Translation Leak-aside Buffer: Defeating Cache Side-channel Protections

with TLB Attacks (USENIX Security 2018)]
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Increasing the attack surface

Not just native code on x86: mobile and web too

- Oren et al, The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications (CCS 2015)

- Lipp et al, ARMageddon: Cache Attacks on Mobile Devices (USENIX Security 2016)
- Gras et al,, ASLR on the Line: Practical Cache Attacks on the MMU (NDSS 2017)

- Schwarz et al,, Fantastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript (FC 2017)

- Lipp et al,, Practical Keystroke Timing Attacks in Sandboxed JavaScript (ESORICS 2017)
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Increasing the attack surface

Not just side channels: software fault attacks too

- Kim et al,, Flipping Bits in Memory Without Accessing Them: An Experimental Study
of DRAM Disturbance Errors (ISCA 2014)

- Bosman et al, Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector (S&P 2016)

- Gruss et al, Rowhammer,js: A Remote Software-Induced Fault Attack in JavaScript
(DIMVA 2016)

- Van der Veen et al, Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms (CCS 2016)

- Tang et al., CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management

(USENIX Security 2017)
43
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Challenges and questions

- lack of documentation on microarchitectural components
- which components are vulnerable to these attacks?
- which software is vulnerable to these attacks?

- how to prevent attacks based on performance optimizations without
removing performance?
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Future: More speculative execution side channels?

{2

SPECTRE

- Meltdown breaks isolation between applications

and kernel by exploiting Out-of-Order execution

- Spectre mistrains branch prediction to

speculatively execute code that should not be
executed

- 3initial variants in January, a 4th one on May 21

- more to come?
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Conclusion

- first paper by Kocher in 1996: 22 years of research in this area

- domain still in expansion: increasing number of papers published since 2015
- adopted countermeasures only target cryptographic implementations

- still a lot more to discover on this iceberg :)

- quick fixes don’t work

- still a lot more work needed to find satisfying countermeasures
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Thank you!

Contact

¥ clementine.maurice@irisa.fr
¥ @BloodyTangerine
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