Evolution des attaques sur la micro-architecture

Clémentine Maurice, Chargée de Recherche CNRS, IRISA
3 Juillet 2018-Colloque Architecture (Satellite Compas’2018)

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations

Attacks on micro-architecture

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks
- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations

identification

D cache hits DD cache misses

Number of accesses

10

Access time [CPU cycles]

Attacks on micro-architecture

Number of accesses

- hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

- faults: bypassing software protections by causing hardware errors
- side channels: observing side effects of hardware on computations

identification

D D cache hits D D cache misses

107

104
10 ‘

100

|
HH”HI ||.|.| HH‘H
00

Access time [CPU cycles]

2

300

400

—

attack

11101 111010001001 11010001 1 100001 1 1

MU

- retrieving secret keys, keystroke

timings

- bypassing OS security (ASLR)

From small optimizations...

2008 @ Nehalem

2012 @ Sandy Bridge

N - new microarchitectures yearly
2014 @ Haswell

2015 @ Broadwell

2016 @ Skylake

2017 @ Kaby Lake

2018 @ Coffee Lake

From small optimizations...

2008 @ Nehalem

2012 @ Sandy Bridge

N - new microarchitectures yearly
i () prel - performance improvement ~ 5%
2015 @ Broadwell

2016 @ Skylake

2017 @ Kaby Lake

2018 @ Coffee Lake

From small optimizations...

2008 @ Nehalem

2012 @ Sandy Bridge

2013 @ Ivy Bridge - new microarchitectures yearly

201 @ Haswell - performance improvement ~ 5%

2015 @ Broaduwell - very small optimizations: caches, branch
2016 @ Skylake prediction...

2017 @ Kaby Lake

2018 @ Coffee Lake

... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations

... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations

- several processes are sharing microarchitectural components

... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations
- several processes are sharing microarchitectural components

- attacker infers information from a victim process via hardware usage

... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations
- several processes are sharing microarchitectural components
- attacker infers information from a victim process via hardware usage

- pure-software attacks by unprivileged processes

... To microarchitectural side-channel attacks

- microarchitectural side channels come from these optimizations

- several processes are sharing microarchitectural components

- attacker infers information from a victim process via hardware usage
- pure-software attacks by unprivileged processes

- sequences of benign-looking actions — hard to detect

Historical recap of past attacks

Historical recap of past attacks

Recent advances

Historical recap of past attacks
Recent advances

Future and challenges

Historical Recap

From theoretical to practical cache attacks

- first theoretical attack in 1996 by Kocher
- first practical attack on RSA in 2005 by Percival, on AES in 2006 by Osvik et al.

- renewed interest for the field in 2014 after Flush+Reload by Yarom and
Falkner

P. C. Kocher. “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems”. In: Crypto’96. 1996.

C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.

D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: the Case of AES". In: CT-RSA 2006. 2006.

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.

Hyper-threading: Same-core attacks

threads sharing one core share resources: L1, L2 cache, branch predictor

Decoders

[32K LT Instruction Cache [~ [Pre-decode ~[lnstr Queue)-—LL,:l

Branch Predictor

1.5K uOP Cache
Load Store Reorder
Buffers || Buffers | Buffers Allocate/Rename/Retire
In-order
*********************** uuTu'Eﬂe?
Scheduler

PcrtO [[Port1 | [Port5 | [Port2 | [Port3 | [Port4
ALU AL

[Load |[load]
V-Mul V-Add StAddr

P
V-Shuffld V-Shuffld 56- FP Shuf
Fdiv 256- FP Add | [256- FP Bool
256- FP MUL 56- FP Blen
256- FP Blend
e 48 bytes/cycle
Line Fill
=1 256K L2 Cache (Unified) Buffers
< » 32K L1 Data Cache

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Load
[StAddr |

Memory Control

Easy solution #1

Possible side channels using

components shared by a core?

Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!

Caches on Intel CPUs

core 0 core 1 core 2 core 3
[[[[
I
[[[[
e || e | e]| e |
ring bus
I I I I 4/
| | | |
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

Caches on Intel CPUs

0 1 re 2 3
I I I I
‘ ; ‘ ‘ ! ‘ ‘ . ‘ ‘ . ‘ - 1 and L2 are private
i I
I D N . -
I I 4/
| | | |
LLC LLC LLC LLC
lice 0 lice 1 slice 2 lice 3

Caches on Intel CPUs

0 1 re 2 3
I I I I
‘ L; ‘ ‘ ! ‘ ‘ § ‘ ‘ L; \ - 1 and L2 are private
‘ P ‘ ‘ L ‘ ‘) ‘ ‘ b ‘ fing bus - last-level cache
I I I I
./
| | | |
LLC LLC LLC LLC
lice 0 lice 1 slice 2 lice 3

Caches on Intel CPUs

—_ - —_— —
‘ L; ‘ ‘ L; ‘ ‘ L; ‘ ‘ L; \ - 1 and L2 are private
I - last-level cache
: : : : /) - divided in slices
| | | |
slce0 sice sice2 slce

Caches on Intel CPUs

core 0 core core 2 core 3
[[[[
\ i \ \ . \ \ £ \ \ i \ - 11 and L2 are private
I I I I
‘ 2 ‘ ‘ 2 ‘ ‘ L2 ‘ ‘ 12 ‘ - last-level cache
ring bus
: : : : /) - divided in slices
- shared across cores
| | | |
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

Caches on Intel CPUs

core 0 core core 2 core 3
[[[[
\ i \ \ . \ \ £ \ \ i \ - 11 and L2 are private
[[[[
‘ 2 ‘ ‘ 2 ‘ ‘ L2 ‘ ‘ 12 ‘ - last-level cache
ring bus
: : : : /) - divided in slices
- shared across cores
| | | | . .
- inclusive
LLC LLC LLC LLC
slice 0 slice 1 slice 2 slice 3

Set-associative caches

0 16 17 2526 El

Address ‘ ‘ Index ‘ Offset ‘

Cache

10

Set-associative caches

0 16 17 2526 El

Address Index ‘ Offset ‘

Cache set

\ —

Cache

Data loaded in a specific set depending on its address

10

Set-associative caches

0 16 17 2526 El

Address Index ‘ Offset ‘

way 0 way 3

Cache set

\‘ —

Cache

Data loaded in a specific set depending on its address

Several ways per set

10

Set-associative caches

0 16 17 2526 El

Address Index ‘ Offset ‘
way 0 way 3
Cache set
e I
4
Cache line —+—7
Cache

Data loaded in a specific set depending on its address
Several ways per set

Cache line loaded in a specific way depending on the replacement policy
10

Cache attacks

- caches improve performance

"

Cache attacks

- caches improve performance

- SRAM is expensive — small caches

"

Cache attacks

- caches improve performance

- SRAM is expensive — small caches
- different timings for memory accesses

"

Cache attacks

- caches improve performance

- SRAM is expensive — small caches
- different timings for memory accesses
1. data is cached — cache hit — fast

"

Cache attacks

- caches improve performance

- SRAM is expensive — small caches
- different timings for memory accesses

1. data is cached — cache hit — fast
2. data is not cached — cache miss — slow

"

Cache attacks

- caches improve performance

- SRAM is expensive — small caches
- different timings for memory accesses

1. data is cached — cache hit — fast
2. data is not cached — cache miss — slow

- cache attacks leverage this timing difference

"

Timing differences

00 cache hits

10% |- 7

Number of accesses

R N H NHHHHHHH HHHHHHHHHHHHHH ol 100 aotfale 1 o 04]

50 100 150 200 250 300 350 400
Access time [CPU cycles]

12

Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

13

Cache attacks: Flush+Reload

cached

Cacheq

|/

T — —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

13

Cache attacks: Flush+Reload

flushes

T — —

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

13

Cache attacks: Flush+Reload

loads data

—

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data
13

Cache attacks: Flush+Reload

reloags data
Victim address space Cache

Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

Step 4: Attacker reloads the data 13

Flush+Reload: Applications

- cross-VM side channel attacks on crypto algorithms

RSA: 96.7% of secret key bits in a single signature
- AES: full key recovery in 30000 dec. (a few seconds)

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014

B. Gulmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES". In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2015

D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium.
2015

https://github.com/IAIK/cache_template_attacks

https://github.com/IAIK/cache_template_attacks

Flush+Reload: Applications

- cross-VM side channel attacks on crypto algorithms

RSA: 96.7% of secret key bits in a single signature
- AES: full key recovery in 30000 dec. (a few seconds)

- Cache Template Attacks: automatically finds information leakage
— side channel on keystrokes and AES T-tables implementation

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014

B. Gulmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES". In: Constructive Side-Channel
Analysis and Secure Design (COSADE). 2015

D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium.
2015

https://github.com/IAIK/cache_template_attacks

https://github.com/IAIK/cache_template_attacks

Flush+Reload: Pros and cons

- fine granularity: 1 cache line (64 Bytes)

15

Flush+Reload: Pros and cons

- fine granularity: 1 cache line (64 Bytes)

- but requires shared memory

15

Flush+Reload: Pros and cons

- fine granularity: 1 cache line (64 Bytes)
- but requires shared memory

— memory deduplication between VMs

15

Easy solution #2

Possible side channels using

memory deduplication?

Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!

Inclusive property

core0 corel

- Inclusive LLC: superset of L1 and L2

1

L2

LLC

Inclusive property

core0 corel

.

L2

- Inclusive LLC: superset of L1 and L2

LLC

Inclusive property

core0 core1
- Inclusive LLC: superset of L1 and L2
1 H .
L2 :
;inclusion
LLC

J

Inclusive property

core0 corel

N

L2

- Inclusive LLC: superset of L1 and L2

LLC

|

Inclusive property

1

L2

LLC

core0

corel

—

- Inclusive LLC: superset of L1 and L2

- data evicted from the LLC is also
evicted from L1 and L2

Inclusive property

1

L2

LLC

core0

corel

‘eviction

- Inclusive LLC: superset of L1 and L2
- data evicted from the LLC is also

evicted from L1 and L2

- a core can evict lines in the private 11

of another core

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Cache attacks: Prime+Probe

N Y S Y S Sy

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Cache attacks: Prime+Probe

loads data

R

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Cache attacks: Prime+Probe

loads data

R

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Cache attacks: Prime+Probe

fast acces

m

e

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)
Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

Last-level cache addressing

35} 17 6 0
physical address tag set offset
30
11
2
Y
[
line /j
slice 0 slice 1 slice 2 slice 3

20

Last-level cache addressing

- last-level cache — as many slices as cores
- undocumented hash function that maps a physical address to a slice

- designed for performance

physical address slice (0o, ...,0r_1)

R <l; .
FOp2islices: 30 bits k bits

21

Prime+Probe on recent procesors?

Undocumented function — impossible to target a set

Victim address space Cache Attacker address space

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID'15. 2015

22

Prime+Probe on recent procesors?

Undocumented function — impossible to target a set

Victim address space Cache Attacker address space

— We reverse-engineered the function!

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID'15. 2015

22

Prime+Probe: Applications

- cross-VM side channel attacks on crypto algorithms:
El Gamal (sliding window): full key recovery in 12 min.

- tracking user behavior in the browser, in JavaScript

- covert channels between virtual machines in the cloud

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P'15. 2015.
Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”.
In: CCS"15. 2015.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Romer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS'17. to appear. 2017.

23

Easy solution #3

Possible side channels using

components shared by a CPU?

24

Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!?

24

Recent Advances

Recent advances

Building practical attacks

25

Covert channels in the cloud

- covert channel: two processes communicating with each other
- not allowed to do so, e.g.,, across VMs

26

Covert channels in the cloud

- covert channel: two processes communicating with each other
- not allowed to do so, e.g.,, across VMs

- literature: stops working with noise on the machine

26

Covert channels in the cloud

- covert channel: two processes communicating with each other
- not allowed to do so, e.g.,, across VMs

- literature: stops working with noise on the machine

- solution? “Just use error-correcting codes”

26

Why can’t we just use error correcting codes?

sender [1]oJo[1]1]0]

Receiver ’1[0[0[1[1[0‘

B ——

(a) Transmission without errors

27

Why can’t we just use error correcting codes?

sender [1]oJo[1]1]0] sender [1]oJo[1]1]0]
Receiver’1|0|0|1|1|0‘ Receiver’1|1|0|1|1lo‘
(a) Transmission without errors (b) Noise: substitution error

27

Why can’t we just use error correcting codes?

sender [1]oJo[1]1]0] sender [1]oJo[1]1]0]
Receiver’1|0|0|1|1|0‘ Receiver’1|1|0|1|1lo‘
(a) Transmission without errors (b) Noise: substitution error
sender [1Jo[T T Jo[1]1]0]

Receiver [1]oJoJoJoJo[1]1]0]

(c) sender descheduled: insertions

27

Why can’t we just use error correcting codes?

sender [1]0[o]1]1]0] senger [1To]o]1]1]0]
vecener [1[0]0[1]7]0] vecener [TTTT0]1]1]0]
(a) Transmission without errors (b) Noise: substitution error
sender (107711 0] sender [1T0]o]1[1]0]
vecener [1T0[o]0]o o [1]7]0] vecener [0 7770]
(C) Sender descheduled: insertions (d) Receiver desched;[e;i:éeztions

27

Our robust covert channel

- physical layer:
- transmits words as a sequence of ‘0’s and 1's
- deals with synchronization errors

- data-link layer:

- divides data to transmit into packets
- corrects the remaining errors

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Romer. “Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud”. In: NDSS'17. to appear. 2017

28

Physical layer: Sending ‘0’s and “1's

- sender and receiver agree on one set

29

Physical layer: Sending ‘0’s and “1's

- sender and receiver agree on one set

- receiver probes the set continuously

29

Physical layer: Sending ‘0’s and “1's

- sender and receiver agree on one set

- receiver probes the set continuously
- sender transmits ‘0" doing nothing
— lines of the receiver still in cache — fast access

29

Physical layer: Sending ‘0’s and “1's

- sender and receiver agree on one set
- receiver probes the set continuously
- sender transmits ‘0" doing nothing
— lines of the receiver still in cache — fast access

- sender transmits 1" accessing addresses in the set
— evicts lines of the receiver — slow access

29

Eviction set generation

- need a set of addresses in the same cache set and same slice

30

Eviction set generation

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

30

Eviction set generation

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

cache set cache line
cache tag index offset

physical address 1OXXXX ;

2MB page offset

- we can build a set of addresses in the same cache set and same slice

30

Eviction set generation

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

cache set cache line
cache tag index offset

physical address 1OXXXX ;

2MB page offset

- we can build a set of addresses in the same cache set and same slice
- without knowing which slice

30

Eviction set generation

- need a set of addresses in the same cache set and same slice
- problem: slice number depends on all bits of the physical address

cache set cache line
cache tag index offset

physical address 1OXXXX ;

2MB page offset

- we can build a set of addresses in the same cache set and same slice
- without knowing which slice
— We use a jamming agreement

30

Sending the first image

31

Handling synchronization errors

Physical layer word Data

12 bits

32

Handling synchronization errors

- deletion errors: request-to-send scheme that also serves as ack

- 3-bit sequence number
- request: encoded sequence number (7 bits)

Physical layer word Data | SQN ‘

12 bits 3 bits

32

Handling synchronization errors

- deletion errors: request-to-send scheme that also serves as ack
- 3-bit sequence number
- request: encoded sequence number (7 bits)

- '0’-insertion errors: error detection code — Berger codes

- appending the number of '0’s in the word to itself
— property: a word cannot consist solely of '0’s

Physical layer word Data | SQN | EDC ‘

12 bits 3 bits 4 bits

32

Synchronization (before)

33

Synchronization (after)

34

Synchronization (after)

34

Synchronization (after)

34

Data-link layer: Error correction

- Reed-Solomon codes to correct the remaining errors

35

Data-link layer: Error correction

- Reed-Solomon codes to correct the remaining errors

- RS word size = physical layer word size = 12 bits

- packet size = 22 — 1= 4095 RS words

- 10% error-correcting code: 409 parity and 3686 data RS words

3686 RS-words 409 RS-words
Data-link layer packet | | | | | | Data "
Physical layer word ‘ Data | SQN | EDC ‘
12 bits 3bits 4 bits

35

Error correction (after)

36

Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% -

37

Evaluation

Environment Bit rate Error rate Noise
Native 75.10 KBps 0.00% -
Native 36.03 KBps 0.00% stress -m 1

37

Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% -

Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25KBps 0.00% -

37

Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% -

Native 36.03 KBps 0.00% stress -m 1

Amazon EC2 45.25KBps 0.00% -

Amazon EC2 45.09KBps 0.00% web server serving files on sender VM

Amazon EC2 42.96 KBps 0.00% stress -m 2 onsender VM

Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM

Amazon EC2 37.42 KBps 0.00% web serveronall 3VMs, stress -m 4 on 3rd
VM, stress -m 1onsenderand receiver VMs

Amazon EC2 34.27KBps 0.00% stress -m 8 on third VM

37

Building an SSH connection

VM 1 VM 2

== = === === === === = = | == o = = = = = = - = = = == = = 1
1 TCP Client 1! TCP Server 1
1 (e.g. ssh) 1! (e.g. sshd) 1
1 A 1! A 1
1 . Socket P! Socket a 1
1 ' o ' |
|| TCP«File || || TCP«File ||
! [1
1 I File System ! File System I 1
1 1! 1
1 Covert Channel || 1 Covert Channel ||
e AR R R A= = = == === h loocoooooog A= = = === ==]
| Hypervisor |

Prime+Probe Prime+Probe o

[e Last Level Cache (LLC) |

38

SSH evaluation

Between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v
Web server on SSH server VM v
Web server on all VMs v

stress -m 1 on server side unstable

39

SSH evaluation

Between two instances on Amazon EC2

Noise Connection
No noise v
stress -m 8 on third VM v
Web server on third VM v
Web server on SSH server VM v
Web server on all VMs v

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

39

Recent advances

Increasing the attack surface

40

Increasing the attack surface

Not just caches: also DRAM, MMU, TLB, GPUs...

+ DRAM [Pessl et al., DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks (USENIX
Security 2016)]

+ GPU [Frigo et al,, Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU
(S&P 2018)]

+ MMU [van Schaik et al., Malicious Management Unit: Why Stopping Cache Attacks in Software
is Harder Than You Think (USENIX Security 2018)]

+ TLB [Gras et al,, Translation Leak-aside Buffer: Defeating Cache Side-channel Protections

with TLB Attacks (USENIX Security 2018)]

41

Increasing the attack surface

Not just native code on x86: mobile and web too

- Oren et al, The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications (CCS 2015)

- Lipp et al, ARMageddon: Cache Attacks on Mobile Devices (USENIX Security 2016)
- Gras et al,, ASLR on the Line: Practical Cache Attacks on the MMU (NDSS 2017)

- Schwarz et al,, Fantastic Timers and Where to Find Them: High-Resolution
Microarchitectural Attacks in JavaScript (FC 2017)

- Lipp et al,, Practical Keystroke Timing Attacks in Sandboxed JavaScript (ESORICS 2017)

42

Increasing the attack surface

Not just side channels: software fault attacks too

- Kim et al,, Flipping Bits in Memory Without Accessing Them: An Experimental Study
of DRAM Disturbance Errors (ISCA 2014)

- Bosman et al, Dedup Est Machina: Memory Deduplication as an Advanced
Exploitation Vector (S&P 2016)

- Gruss et al, Rowhammer,js: A Remote Software-Induced Fault Attack in JavaScript
(DIMVA 2016)

- Van der Veen et al, Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms (CCS 2016)

- Tang et al., CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management

(USENIX Security 2017)
43

Future and Challenges

Challenges and questions

- lack of documentation on microarchitectural components
- which components are vulnerable to these attacks?
- which software is vulnerable to these attacks?

- how to prevent attacks based on performance optimizations without
removing performance?

44

Future: More speculative execution side channels?

{2

SPECTRE

- Meltdown breaks isolation between applications

and kernel by exploiting Out-of-Order execution

- Spectre mistrains branch prediction to

speculatively execute code that should not be
executed

- 3initial variants in January, a 4th one on May 21

- more to come?

45

Conclusion

- first paper by Kocher in 1996: 22 years of research in this area

- domain still in expansion: increasing number of papers published since 2015
- adopted countermeasures only target cryptographic implementations

- still a lot more to discover on this iceberg :)

- quick fixes don’t work

- still a lot more work needed to find satisfying countermeasures

46

Thank you!

Contact

¥ clementine.maurice@irisa.fr
¥ @BloodyTangerine

Evolution des attaques sur la micro-architecture

Clémentine Maurice, Chargée de Recherche CNRS, IRISA
3 Juillet 2018-Colloque Architecture (Satellite Compas’2018)

	Historical Recap
	Recent Advances
	Future and Challenges

