
Cache attacks:
Software side-channel and fault attacks

Clémentine Maurice, Graz University of Technology
May 11, 2017—Spring school on Security & Correctness in the IoT 2017



Who am I

• Clémentine Maurice
• PhD in computer science, Postdoc @ Graz University Of Technology
•  @BloodyTangerine
•  clementine.maurice@iaik.tugraz.at

+ Secure Systems team: Daniel Gruss, Michael Schwarz, Moritz Lipp

2

https://twitter.com/BloodyTangerine
mailto:clementine.maurice@iaik.tugraz.at


Who am I

• Clémentine Maurice
• PhD in computer science, Postdoc @ Graz University Of Technology
•  @BloodyTangerine
•  clementine.maurice@iaik.tugraz.at

+ Secure Systems team: Daniel Gruss, Michael Schwarz, Moritz Lipp

2

https://twitter.com/BloodyTangerine
mailto:clementine.maurice@iaik.tugraz.at


Scope

• everyday hardware: servers,
workstations, laptops,
smartphones…

• remote side-channel attacks

3



Scope

• everyday hardware: servers,
workstations, laptops,
smartphones…

• remote side-channel attacks

3



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed

• does not mean safe execution
• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed
• does not mean safe execution

• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed
• does not mean safe execution
• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Side channels

• safe software infrastructure → no bugs, e.g., Heartbleed
• does not mean safe execution
• information leaks because of the hardware it runs on
• no “bug” in the sense of a mistake → lots of performance optimizations

→ crypto and sensitive info., e.g., keystrokes and mouse movements

4



Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access
• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ remote attacks

5



Sources of leakage

• via power consumption, electromagnetic leaks
→ targeted attacks, physical access

• via shared hardware and microarchitecture
→ remote attacks

5



Shared hardware

shared hardware

CPU

data and
instruction

cache

arithmetic
logic
unit

branch
prediction

unit

memory

memory
bus

DRAM

6



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly
• performance improvement ≈ 5%

• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels

• no documentation on this intellectual property



From small optimizations to side channels

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…

• … leading to side channels
• no documentation on this intellectual property



Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”

• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…
• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5

• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages

• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Today’s CPU complexity

• “Intel x86 documentation has more pages than the 6502 has transistors”
• 6502: 8-bit microprocessor, used in the Apple II, Commodore 64, Atari 800…

• year: 1975 → 3510 transistors

• 22-core Intel Xeon Broadwell-E5
• year: 2016 → 7.2 billion transistors

• Intel Software Developer’s Manuals (sept. 2016): 4670 pages
• (there are actually more manuals than just the SDM)

Ken Shirriff, http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html

8

http://www.righto.com/2013/09/intel-x86-documentation-has-more-pages.html


Outline

• Background
• Cache covert channels
• Side-channel attacks on crypto, keystrokes, and KASLR
• Fault attacks on DRAM in JavaScript
• Countermeasures and conclusion

9



Cache Attack Techniques



mov

10



mov

11



mov—What could go wrong?

• lots of exceptions for mov

• but accessing data loads it to the cache
→ side effects on computations!

12



mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

12



mov—What could go wrong?

• lots of exceptions for mov
• but accessing data loads it to the cache

→ side effects on computations!

12



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in

• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers

• different levels of the CPU cache
• main memory
• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache

• main memory
• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache
• main memory

• disk storage

13



Memory hierarchy

CPU Registers L1 Cache L2 Cache Memory Disk storage

• data can reside in
• CPU registers
• different levels of the CPU cache
• main memory
• disk storage

13



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache
• divided in slices
• shared across cores
• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices

• shared across cores
• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores

• inclusive

14



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring
bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

14



Set-associative caches

Index OffsetAddress

Cache

15



Set-associative caches

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

15



Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

15



Set-associative caches

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy
15



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits

16



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se
s

cache hits cache misses

16



Accurate timings

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

17



Accurate timings

• very short timings
• rdtsc instruction: cycle-accurate timestamps

[...]
rdtsc
function()
rdtsc
[...]

17



Accurate timings

• do you measure what you think you measure?

• out-of-order execution → what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

18



Accurate timings

• do you measure what you think you measure?
• out-of-order execution

→ what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

18



Accurate timings

• do you measure what you think you measure?
• out-of-order execution → what is really executed

rdtsc
function()
[...]
rdtsc

rdtsc
[...]
rdtsc
function()

rdtsc
rdtsc
function()
[...]

18



Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)

• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

19



Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid

• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

19



Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

19



Accurate timings

• use pseudo-serializing instruction rdtscp (recent CPUs)
• and/or use serializing instructions like cpuid
• and/or use fences like mfence

Intel, How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures
White Paper, December 2010.

19



Cache attacks

• cache attacks → exploit timing differences of memory accesses

• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

20



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

20



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

20



Cache attacks

• cache attacks → exploit timing differences of memory accesses
• attacker monitors which lines are accessed, not the content
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes
• e.g., steals crypto keys, spies on keystrokes

20



Cache attacks techniques

• two (main) techniques
1. Flush+Reload (Gullasch et al., Osvik et al., Yarom et al.)
2. Prime+Probe (Percival, Osvik et al., Liu et al.)

• exploitable on x86 and ARM

D. Gullasch et al. “Cache Games – Bringing Access-Based Cache Attacks on AES to Practice”. In: S&P’11. 2011.
Y. Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.
C. Percival. “Cache missing for fun and profit”. In: Proceedings of BSDCan. 2005.
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.

21



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

22



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

22



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

22



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

22



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 22



What if there is no shared memory?



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

24



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

24



Inclusive property

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

24



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

24



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

24



Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

24



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

25



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

25



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

25



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

25



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

25



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

25



Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

26



Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

26



Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

27



Last-level cache addressing

• last-level cache → as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

28



Prime+Probe on recent procesors?

Undocumented function → impossible to target the same set in the same slice

Victim address space Cache Attacker address space

?

?

29



Let’s reverse-engineer
the last-level cache!



Reverse engineering method

1. find some way to map one address to one slice

2. repeat for every address with a 64B stride
3. infer a function out of it

31



Reverse engineering method

1. find some way to map one address to one slice
2. repeat for every address with a 64B stride

3. infer a function out of it

31



Reverse engineering method

1. find some way to map one address to one slice
2. repeat for every address with a 64B stride
3. infer a function out of it

31



How to map addresses to slices?

• with performance counters (Maurice et al., 2015)
• with a timing attack

• using clflush (using Gruss et al., 2016)
• using memory accesses (Yarom et al., 2015)

C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015.
D. Gruss et al. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.
Y. Yarom et al. “Mapping the Intel Last-Level Cache”. In: Cryptology ePrint Archive, Report 2015/905 (2015), pp. 1–12.

32



How to map addresses to slices?

• with performance counters (Maurice et al., 2015)
• with a timing attack

• using clflush (using Gruss et al., 2016)
• using memory accesses (Yarom et al., 2015)

C. Maurice et al. “Reverse Engineering Intel Complex Addressing Using Performance Counters”. In: RAID’15. 2015.
D. Gruss et al. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016.
Y. Yarom et al. “Mapping the Intel Last-Level Cache”. In: Cryptology ePrint Archive, Report 2015/905 (2015), pp. 1–12.

32



Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

address

UNC_CBO_CACHE_LOOKUP 0 0 0 0

33



Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC_CBO_CACHE_LOOKUP

0x3a0071010

1 0 0 0

CBo 0

slice 0

33



Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC_CBO_CACHE_LOOKUP

0x3a0071090

1 0 1 0

CBo 2

slice 2

33



Mapping with performance counters

• event UNC_CBO_CACHE_LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC_CBO_CACHE_LOOKUP

0x3a00710d0

1 0 1 1

CBo 3

slice 3

33



Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

34



Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session

3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

34



Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

34



Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

34



Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

34



Mapping a physical address to a slice

1. translate virtual to physical address with /proc/pid/pagemap
2. set up monitoring session
3. repeat access to a single address

→ clflush is already counted as an access

4. read UNC_CBO_CACHE_LOOKUP event for each CBo
5. slice is the one that has the maximum lookup events

34



Mapping physical addresses to slices

0x3a0071010 0x3a0071050 0x3a0071090 0x3a00710d0
102

103

104

Nu
m
be

ro
f

lo
ok

up
ev
en

ts

CBo 0 CBo 1 CBo 2 CBo 3

35



Inferring the function

Two cases:

1. linear function (2n number of cores): XOR of address bits

• solve equations with linear algebra
• brute force

2. non-linear function (the rest): more complicated

36



Inferring the function

Two cases:

1. linear function (2n number of cores): XOR of address bits
• solve equations with linear algebra

• brute force

2. non-linear function (the rest): more complicated

36



Inferring the function

Two cases:

1. linear function (2n number of cores): XOR of address bits
• solve equations with linear algebra
• brute force

2. non-linear function (the rest): more complicated

36



Inferring the function

Two cases:

1. linear function (2n number of cores): XOR of address bits
• solve equations with linear algebra
• brute force

2. non-linear function (the rest): more complicated

36



Last-level cache linear functions

3 functions, depending on the number of cores

Address bit
3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Function valid for Sandy Bridge, Ivy Bridge, Haswell, Broadwell

37



#1. Cache Covert Channels



Covert channel

• malicious privacy gallery app

• no permissions except accessing your images
• malicious weather widget

• no permissions except accessing the Internet

38



Covert channel

• malicious privacy gallery app
• no permissions except accessing your images

• malicious weather widget

• no permissions except accessing the Internet

38



Covert channel

• malicious privacy gallery app
• no permissions except accessing your images

• malicious weather widget

• no permissions except accessing the Internet

38



Covert channel

• malicious privacy gallery app
• no permissions except accessing your images

• malicious weather widget
• no permissions except accessing the Internet

38



Covert channel

• malicious privacy gallery app
• no permissions except accessing your images

• malicious weather widget
• no permissions except accessing the Internet

covert
channel

38



Covert channel

• malicious privacy gallery app
• no permissions except accessing your images

• malicious weather widget
• no permissions except accessing the Internet

covert
channel

38



Covert channel

• malicious privacy gallery app
• no permissions except accessing your images

• malicious weather widget
• no permissions except accessing the Internet

covert
channel

38



General principle

• sender transmits bits with cache hits and misses
• receiver monitors a cache line or a cache set to receive 1 bit

• transmitting on several lines or sets to send several bits
• Flush+Reload: using cache line from a shared library/executable

• sender: accesses the line to send ’1’, stays idle to send ’0’
• receiver: reloads the line, then flushes it

• Prime+Probe: agreeing on a cache set
• sender: primes the set to send ’1’, stays idle to send ’0’
• receiver: probes the set

39



General principle

• sender transmits bits with cache hits and misses
• receiver monitors a cache line or a cache set to receive 1 bit
• transmitting on several lines or sets to send several bits

• Flush+Reload: using cache line from a shared library/executable
• sender: accesses the line to send ’1’, stays idle to send ’0’
• receiver: reloads the line, then flushes it

• Prime+Probe: agreeing on a cache set
• sender: primes the set to send ’1’, stays idle to send ’0’
• receiver: probes the set

39



General principle

• sender transmits bits with cache hits and misses
• receiver monitors a cache line or a cache set to receive 1 bit
• transmitting on several lines or sets to send several bits
• Flush+Reload: using cache line from a shared library/executable

• sender: accesses the line to send ’1’, stays idle to send ’0’
• receiver: reloads the line, then flushes it

• Prime+Probe: agreeing on a cache set
• sender: primes the set to send ’1’, stays idle to send ’0’
• receiver: probes the set

39



General principle

• sender transmits bits with cache hits and misses
• receiver monitors a cache line or a cache set to receive 1 bit
• transmitting on several lines or sets to send several bits
• Flush+Reload: using cache line from a shared library/executable

• sender: accesses the line to send ’1’, stays idle to send ’0’
• receiver: reloads the line, then flushes it

• Prime+Probe: agreeing on a cache set
• sender: primes the set to send ’1’, stays idle to send ’0’
• receiver: probes the set

39



Issues

• programs competing for
• the CPU cache
• scheduling

• literature: covert channels stop working with noise on the machine
• solution? “Just use error-correcting codes”

• let’s investigate this!

C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

40



Issues

• programs competing for
• the CPU cache
• scheduling

• literature: covert channels stop working with noise on the machine

• solution? “Just use error-correcting codes”

• let’s investigate this!

C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

40



Issues

• programs competing for
• the CPU cache
• scheduling

• literature: covert channels stop working with noise on the machine
• solution? “Just use error-correcting codes”

• let’s investigate this!

C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

40



Issues

• programs competing for
• the CPU cache
• scheduling

• literature: covert channels stop working with noise on the machine
• solution? “Just use error-correcting codes”

• let’s investigate this!

C. Maurice et al. “Hello from the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

40



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

41



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

41



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

41



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

41



Our robust covert channel

• physical layer:
• transmits words as a sequence of ‘0’s and ‘1’s
• deals with synchronization errors

• data-link layer:
• divides data to transmit into packets
• corrects the remaining errors

42



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set

• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

43



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously

• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

43



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

43



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing

→ lines of the receiver still in cache → fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver → slow access

43



Eviction set generation

• need a set of addresses in the same cache set and same slice

• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

44



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

44



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice

• without knowing which slice

44



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

44



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
im

e

45



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
ob

e

45



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
im

e

45



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
ob

e

45



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

S S S S S S S S

receiver
eviction sets

prime

45



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

R R R R R R R R

S S S S S S S S

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

S S S S S S S S

receiver
eviction sets

probe

45



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

receiver
eviction sets

prime

45



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

45



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

receiver
eviction sets

#1
probe

45



Jamming agreement

sender
eviction sets

#1 3

#2

#3

#4

Cache Sets

receiver
eviction sets

#1

45



Jamming agreement

sender
eviction sets

#1 3

#2

#3

#4

Cache Sets

receiver
eviction sets

#1

45



Jamming agreement

sender
eviction sets

#1 3

#2

#3

#4

repeat!

receiver
eviction sets

#1

45



Jamming agreement

sender
eviction sets

#1 3

#2 3

#3

#4

repeat!

receiver
eviction sets

#2

#1

45



Jamming agreement

sender
eviction sets

#1 3

#2 3

#3 3

#4

repeat!

receiver
eviction sets

#3

#2

#1

45



Jamming agreement

sender
eviction sets

#1 3

#2 3

#3 3

#4 3

repeat!

receiver
eviction sets

#4

#3

#2

#1

45



Sending the first image

46



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack

• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

47



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

47



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code → Berger codes
• appending the number of ’0’s in the word to itself

→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

47



Synchronization (before)

48



Synchronization (after)

49



Synchronization (after)

49



Synchronization (after)

49



Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors

• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

50



Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors
• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

50



Error correction (after)

51



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –

Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

52



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1

Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

52



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –

Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

52



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

52



Building an SSH connection

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

53



SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

54



SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

54



Cache covert channels: Take-away

• cache covert channels are practical

• even in the cloud, even in presence of extraordinary noise
• our robust covert channel supports an SSH connection
• we extended Amazon’s product portfolio :)

55



Cache covert channels: Take-away

• cache covert channels are practical
• even in the cloud, even in presence of extraordinary noise

• our robust covert channel supports an SSH connection
• we extended Amazon’s product portfolio :)

55



Cache covert channels: Take-away

• cache covert channels are practical
• even in the cloud, even in presence of extraordinary noise
• our robust covert channel supports an SSH connection

• we extended Amazon’s product portfolio :)

55



Cache covert channels: Take-away

• cache covert channels are practical
• even in the cloud, even in presence of extraordinary noise
• our robust covert channel supports an SSH connection
• we extended Amazon’s product portfolio :)

55



Cache covert channels: Take-away

• cache covert channels are practical
• even in the cloud, even in presence of extraordinary noise
• our robust covert channel supports an SSH connection
• we extended Amazon’s product portfolio :)

55



Cache covert channels: Take-away

• cache covert channels are practical
• even in the cloud, even in presence of extraordinary noise
• our robust covert channel supports an SSH connection
• we extended Amazon’s product portfolio :)

55



#2. Side-Channel Attack on Crypto



Side-channel attack on AES T-Tables implementation

• AES T-Tables: fast software implementation

• uses precomputed look-up tables
• one-round known-plaintext attack by Osvik et al.

• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.

56



Side-channel attack on AES T-Tables implementation

• AES T-Tables: fast software implementation
• uses precomputed look-up tables

• one-round known-plaintext attack by Osvik et al.
• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.

56



Side-channel attack on AES T-Tables implementation

• AES T-Tables: fast software implementation
• uses precomputed look-up tables
• one-round known-plaintext attack by Osvik et al.

• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.

56



Side-channel attack on AES T-Tables implementation

• AES T-Tables: fast software implementation
• uses precomputed look-up tables
• one-round known-plaintext attack by Osvik et al.

• p plaintext and k secret key
• intermediate state x(r) = (x(r)0 , . . . ,x(r)15 ) at each round r
• first round, accessed table indices are

x(0)i = pi⊕ki for all i= 0, . . . ,15

→ recovering accessed table indices ⇒ recovering the key

D. A. Osvik et al. “Cache Attacks and Countermeasures: the Case of AES”. In: CT-RSA 2006. 2006.

56



Side-channel attack on AES T-Tables implementation

• monitoring which T-Table entry is accessed (k0 = 0x00)
ad

dr
es
s

plaintext byte values

Flush+Reload

ad
dr
es
s

plaintext byte values

Prime+Probe
57



Side-channel attack on AES T-Tables implementation

• it’s an old attack…

• everything should be fixed by now…
• Bouncy Castle on Android → default implementation uses T-Tables

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

58



Side-channel attack on AES T-Tables implementation

• it’s an old attack…
• everything should be fixed by now…

• Bouncy Castle on Android → default implementation uses T-Tables

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

58



Side-channel attack on AES T-Tables implementation

• it’s an old attack…
• everything should be fixed by now…
• Bouncy Castle on Android → default implementation uses T-Tables

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

58



More attacks

• Flush+Reload
• RSA: 96.7% of secret key bits in a single signature (Yarom et al.)
• AES: full key recovery in 30000 dec. (a few seconds) (Guelmezoglu et al.)

• Prime+Probe
• El Gamal (sliding window): full key recovery in 12 min. (Liu et al.)

Y. Yarom et al. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014
B. Gülmezoglu et al. “A Faster and More Realistic Flush+Reload Attack on AES”. In: COSADE’15. 2015
F. Liu et al. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.

59



Side-channel attack on crypto: Take-away

• you should never write crypto with secret-dependent memory accesses

• most recent implementations are now protected against these attacks
• e.g., really hard to use AES T-Tables by mistake on OpenSSL
• big issue is adoption and legacy code still running

60



Side-channel attack on crypto: Take-away

• you should never write crypto with secret-dependent memory accesses
• most recent implementations are now protected against these attacks
• e.g., really hard to use AES T-Tables by mistake on OpenSSL

• big issue is adoption and legacy code still running

60



Side-channel attack on crypto: Take-away

• you should never write crypto with secret-dependent memory accesses
• most recent implementations are now protected against these attacks
• e.g., really hard to use AES T-Tables by mistake on OpenSSL
• big issue is adoption and legacy code still running

60



#3. Side-Channel Attack on
Keystroke Timings



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks

• learning phase
1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

61



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

61



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped

2. trigger an event while Flush+Reload one address
→ cache hit: address used by the library/executable

3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

61



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

61



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable

3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

61



Cache Template Attacks

• locating event-dependent memory access → Cache Template Attacks
• learning phase

1. shared library or executable is mapped
2. trigger an event while Flush+Reload one address

→ cache hit: address used by the library/executable
3. repeat step 2 for every address

D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015.

61



Which addresses to monitor?

• cache template matrix
= how many cache hits for each pair (event, address)?

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

62



Which addresses to monitor?

• cache template matrix
= how many cache hits for each pair (event, address)?

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

Many cache hits

62



Which addresses to monitor?

• cache template matrix
= how many cache hits for each pair (event, address)?

0x
41
50
0

0x
45
14
0

0x
56
94
0

0x
57
28
0

0x
58
48
0

0x
60
28
0

0x
60
34
0

0x
60
58
0

0x
66
34
0

0x
66
38
0

0x
72
30
0

0x
72
34
0

0x
72
38
0

0x
78
44
0

0x
98
60
0

A ddresses

backspace

space

enter

alphabet

In
pu
t

Many cache hits

No cache hits

62



Spying on keystrokes

• Flush+Reload and Evict+Reload: fine-grained attacks → spy on keystrokes
• high-resolution timers → precise inter-keystroke timing
• next step: infer typed words with Hidden Markov Models

0 1 2 3 4 5 6 7

100

200

300

t h i s Space i s Space a Space m e s s a g e

Time in seconds

Ac
ce
ss

tim
e Key Space

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016

63



Differentiating events

• distinguishing between different types of events by monitoring access time

0 2 4 6 8 10 12 14 16 18

50

100

150

200

Tap Tap Tap Swipe Swipe Swipe Tap Tap Tap Swipe Swipe

Time in seconds

Ac
ce
ss

tim
e

M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.

64



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy

• further computations are needed to derive typed words
• but the attack also allows distinguishing key groups

→ reduces search space for, e.g., password retrieval

65



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy
• further computations are needed to derive typed words

• but the attack also allows distinguishing key groups
→ reduces search space for, e.g., password retrieval

65



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy
• further computations are needed to derive typed words
• but the attack also allows distinguishing key groups

→ reduces search space for, e.g., password retrieval

65



Side-channel attack on keystrokes: Take-away

• obtaining precise timings is easy
• further computations are needed to derive typed words
• but the attack also allows distinguishing key groups

→ reduces search space for, e.g., password retrieval

65



#4. Side-Channel Attack on KASLR



prefetch instructions

prefetch fetches the line of data from memory containing the specified byte

6 prefetch instructions:

• prefetcht0: suggests CPU to load data into L1

• prefetcht1: suggests CPU to load data into L2

• prefetcht2: suggests CPU to load data into L3

• prefetchnta: suggests CPU to load data for non-temporal access

• prefetchw: suggests CPU to load data with intention to write

• prefetchwt1: suggests CPU to load vector data with intention to write

66



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

67



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache.

Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

67



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context.

Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

67



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty.

For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

67



prefetch according to Intel

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
cache. Use of software prefetch should be limited to memory addresses that are
managed or owned within the application context. Prefetching to addresses that
are not mapped to physical pages can experience non-deterministic performance
penalty. For example specifying a NULL pointer (0L) as address for a prefetch can
cause long delays.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2014

67



A little bit more background
before continuing…



Address translation

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)
48-bit virtual address

CR3 PML4
PML4E 0
PML4E 1

···
#PML4I
···

PML4E 511

PDPT
PDPTE 0
PDPTE 1

···
#PDPTI
···

PDPTE 511

Page Directory
PDE 0
PDE 1

···
PDE #PDI

···
PDE 511

Page Table
PTE 0
PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page
Byte 0
Byte 1

···
Offset

···
Byte 4095

69



Address translation caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

Lookup
direction

70



Kernel is mapped in every process

Today’s operating systems:

Shared address space
User memory Kernel memory

0 −1

context switch

71



Kernel Address Space Layout Randomization (KASLR)

Driver A

0 −1

Driver A (after reboot #1)

0 −1

Driver A (after reboot #2)

0 −1

• same driver, different offset at each boot

• leaking kernel/driver addresses defeats KASLR

72



Kernel Address Space Layout Randomization (KASLR)

Driver A

0 −1

Driver A (after reboot #1)

0 −1

Driver A (after reboot #2)

0 −1

• same driver, different offset at each boot
• leaking kernel/driver addresses defeats KASLR

72



Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• OS X, Linux, BSD, Xen PVM (Amazon EC2)

• not Windows

73



Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• OS X, Linux, BSD, Xen PVM (Amazon EC2)
• not Windows

73



Let’s go back to prefetch!



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”

• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: CCS’16. 2016

75



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU

• generates no faults

Property #1: do not check privileges

D. Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: CCS’16. 2016

75



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: CCS’16. 2016

75



prefetch: Unusual instructions (1)

• tells the CPU “I might need that later”
• hint—may be ignored by the CPU
• generates no faults

Property #1: do not check privileges

D. Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: CCS’16. 2016

75



prefetch: Unusual instructions (2)

• operand is a virtual address

• but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: CCS’16. 2016

76



prefetch: Unusual instructions (2)

• operand is a virtual address
• but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: CCS’16. 2016

76



prefetch: Unusual instructions (2)

• operand is a virtual address
• but it needs to translate the virtual address to a physical address

Property #2: execution time varies

D. Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”. In: CCS’16. 2016

76



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

• cache hit → physical address in kernel mapping is the correct translation

77



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

cachedcached

• cache hit → physical address in kernel mapping is the correct translation

77



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

flush

• cache hit → physical address in kernel mapping is the correct translation

77



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

prefetch

• cache hit → physical address in kernel mapping is the correct translation

77



Address-translation oracle

Exploiting property #1 + kernel direct-physical map

Virtual address space

Physical memory

Cache

0

0 max. phys.

247 −247 −1

dir
ect

ma
p

reload = cache hit

• cache hit → physical address in kernel mapping is the correct translation
77



Address-translation oracle

0 20 40 60 80 100 120 140 160 180 200 220 240
100

150

200

250

Page offset in direct-physical map

M
in
.a

cc
es
s
la
te
nc

y
in

cy
cl
es

78



Translation-level oracle

Exploiting property #2

PDPT PD PT cached P. uncached P.

200

300

400

230 246
222

181

383

Mapping level

Ex
ec
ut
io
n
tim

e
in

cy
cl
es

• timing depends on where the translation stops

79



Translation-level oracle

Exploiting property #2

PDPT PD PT cached P. uncached P.

200

300

400

230 246
222

181

383

Mapping level

Ex
ec
ut
io
n
tim

e
in

cy
cl
es

• timing depends on where the translation stops 79



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

80



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)

• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

80



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses

• recovering translation levels of a process (→ /proc/pid/pagemap)
→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

80



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

80



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

80



Prefetch side-channel attacks

Using the two oracles

• variants of cache attacks (e.g., Flush+Prefetch)
• Rowhammer attacks on privileged addresses
• recovering translation levels of a process (→ /proc/pid/pagemap)

→ now privileged → bypasses ASLR

• translating virtual addresses to physical addresses (→ /proc/pid/pagemap)
→ now privileged → re-enables ret2dir exploits

• locating kernel drivers
→ bypasses KASLR

80



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

81



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer

2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

81



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver

3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

81



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)

→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

81



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

81



Defeating KASLR by locating kernel driver (1)

For all mapped pages, found with the translation-level oracle

1. evict translation caches: Sleep() / access large memory buffer
2. perform syscall to driver
3. time prefetch(page address)
→ fastest average access time is a driver page

Full attack on Windows 10 in < 12 seconds

81



Defeating KASLR by locating kernel driver (2)

6,000 8,000 10,000 12,000 14,000

90

100

110

120

Page offset in kernel driver region

Av
g.

ex
ec
.t
im

e
[c
yc
le
s]

82



Prefetch side-channel attacks: Take-away

• prefetch does not allow you to access memory

• doesn’t mean that it is a good idea to not perform any check
• other microarchitectural attacks targeted KASLR
• still not completely dead

D. Gruss et al. “KASLR is Dead: Long Live KASLR”. In: ESSoS’17. to appear. 2017.

83



Prefetch side-channel attacks: Take-away

• prefetch does not allow you to access memory
• doesn’t mean that it is a good idea to not perform any check

• other microarchitectural attacks targeted KASLR
• still not completely dead

D. Gruss et al. “KASLR is Dead: Long Live KASLR”. In: ESSoS’17. to appear. 2017.

83



Prefetch side-channel attacks: Take-away

• prefetch does not allow you to access memory
• doesn’t mean that it is a good idea to not perform any check
• other microarchitectural attacks targeted KASLR

• still not completely dead

D. Gruss et al. “KASLR is Dead: Long Live KASLR”. In: ESSoS’17. to appear. 2017.

83



Prefetch side-channel attacks: Take-away

• prefetch does not allow you to access memory
• doesn’t mean that it is a good idea to not perform any check
• other microarchitectural attacks targeted KASLR
• still not completely dead

D. Gruss et al. “KASLR is Dead: Long Live KASLR”. In: ESSoS’17. to appear. 2017.

83



#5. Fault Attacks on DRAM in
JavaScript



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

84



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

84



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

84



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

84



DRAM organization

chip
bank 0

row 0
row 1
row 2
…

row 32767

row buffer

• bits in cells in rows
• access: activate row,
copy to row buffer

85



DRAM refresh

• cells leak → repetitive refresh necessary
• refresh ≈ reading (destructive) + writing same data again
• maximum interval between refreshes to guarantee data integrity

• cells leak faster upon proximate accesses → Rowhammer

86



DRAM refresh

• cells leak → repetitive refresh necessary
• refresh ≈ reading (destructive) + writing same data again
• maximum interval between refreshes to guarantee data integrity

• cells leak faster upon proximate accesses → Rowhammer

86



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

87



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

87



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

87



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

87



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

activate

row buffer

copy

87



Rowhammer

“It’s like breaking into an apartment by repeatedly slamming a neighbor’s door
until the vibrations open the door you were after” – Motherboard Vice

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 0 1 1 1 1 1 0 1 0 1 1 1 1

bit flips in row 2!

87



Impact of the CPU cache

CPU
core

CPU
cache

DRAM

• only non-cached accesses reach DRAM
• original attacks use clflush instruction

→ flush line from cache
→ next access will be served from DRAM

88



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

cl
fl
us
h

clflush

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

cl
fl
us
h

clflush

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

reload

reload

reload

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

cl
fl
us
h

clflush

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

reload

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

cl
fl
us
h

clflush

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

reload

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

cl
fl
us
h

clflush

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

reload

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

cl
fl
us
h

clflush

wait for it…

89



Rowhammer (with clflush)

DRAM bank

cache set 2

cache set 1

reload

reload

bit flip!

89



Flush, reload, flush, reload…

• the core of Rowhammer is essentially a Flush+Reload loop
• as much an attack on DRAM as on cache

90



Rowhammer without clflush?

• idea: avoid clflush to be independent of specific instructions
→ no clflush in JavaScript

• our approach: use regular memory accesses for eviction

→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.

91



Rowhammer without clflush?

• idea: avoid clflush to be independent of specific instructions
→ no clflush in JavaScript

• our approach: use regular memory accesses for eviction
→ techniques from cache attacks!

→ Rowhammer, Prime+Probe style!

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.

91



Rowhammer without clflush?

• idea: avoid clflush to be independent of specific instructions
→ no clflush in JavaScript

• our approach: use regular memory accesses for eviction
→ techniques from cache attacks!
→ Rowhammer, Prime+Probe style!

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.

91



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

lo
ad

load

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

repeat!

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

reload

reload

wait for it…

92



Rowhammer without clflush

DRAM bank

cache set 2

cache set 1

bit flip!

92



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4

load

9

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 49

load

10

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910

load

11

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 11

load

12

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112

load

13

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 13

load

14

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314
load

15

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314 15
load

16

• no LRU replacement

• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement
• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

93



Replacement policy since Ivy Bridge

n accesses for an n-way cache

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement
• only 75% success rate on Haswell
• more accesses → higher success rate, but too slow

93



Requirements for Rowhammer

1. uncached memory accesses: need to reach DRAM
2. fast memory accesses: race against the next row refresh

→ optimize the eviction rate and the timing

94



Requirements for Rowhammer

1. uncached memory accesses: need to reach DRAM
2. fast memory accesses: race against the next row refresh

→ optimize the eviction rate and the timing

94



Cache eviction strategies: The beginning

Ad
dr
es
s a1

a2
a3
a4
a5
a6
a7
a8
a9

Time

→ fast and effective on Haswell: eviction rate >99.97%

95



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17
P-1-1-1-20 20

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7

P-1-1-1-20 20 99.82% 3

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Evaluation

We evaluated more than 10000 strategies...

strategy # accesses eviction rate loop time

P-1-1-1-17 17 74.46% 7 307 ns 3

P-1-1-1-20 20 99.82% 3 934 ns 7

P-2-1-1-17 34 99.86% 3 191 ns 3

P-2-2-1-17 64 99.98% 3 180 ns 3

→ more accesses, smaller execution time?

Executed in a loop, on a Haswell with a 16-way last-level cache

96



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

Miss
(intended)

Miss
(intended)

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H

Miss
(intended)

Miss
(intended)

H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss

Miss
(intended)

Miss
(intended)

H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss

Miss
(intended)

Miss
(intended)

H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss

Miss
(intended)

Miss
(intended)

H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss

Miss
(intended)

Miss
(intended)

H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss

Miss
(intended)

Miss
(intended)

H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss H

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Cache eviction strategies: Illustration

P-1-1-1-17 (17 accesses, 307ns)

P-2-1-1-17 (34 accesses, 191ns)

Time in ns

Miss
(intended)

Miss
(intended)

H Miss Miss Miss H Miss Miss Miss H Miss Miss Miss H Miss Miss

Miss
(intended)

Miss
(intended)

H H H H H H H H Miss H H H H H H H H Miss H H H H H H H H Miss H H H H H

97



Evaluation on Haswell

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
100

102

104

106

Refresh interval in µs (BIOS configuration)

Bi
tfl

ip
s

clflush Evict (Native) Evict (JavaScript)

Number of bit flips within 15 minutes.

98



Rowhammer.js: Take-Away

• cache eviction fast enough to replace clflush
• independent of programming language and available instructions

• lessons learned from side channels to perform a fault attack
• first remote fault attack, from a browser
• if you think a fault is not exploitable, think again

E. Bosman et al. “Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector”. In: S&P’16. 2016

99



Rowhammer.js: Take-Away

• cache eviction fast enough to replace clflush
• independent of programming language and available instructions
• lessons learned from side channels to perform a fault attack

• first remote fault attack, from a browser
• if you think a fault is not exploitable, think again

E. Bosman et al. “Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector”. In: S&P’16. 2016

99



Rowhammer.js: Take-Away

• cache eviction fast enough to replace clflush
• independent of programming language and available instructions
• lessons learned from side channels to perform a fault attack
• first remote fault attack, from a browser

• if you think a fault is not exploitable, think again

E. Bosman et al. “Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector”. In: S&P’16. 2016

99



Rowhammer.js: Take-Away

• cache eviction fast enough to replace clflush
• independent of programming language and available instructions
• lessons learned from side channels to perform a fault attack
• first remote fault attack, from a browser
• if you think a fault is not exploitable, think again

E. Bosman et al. “Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector”. In: S&P’16. 2016

99



Countermeasures



Countermeasures

• different levels: hardware, system, application
• different goals

• remove interferences
• add noise to interferences
• make it impossible to measure interferences

100



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction

→ make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged

• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information

→ make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing

→ make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture

→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Fixing the instruction set?

• clflush
• unprivileged line eviction → make it privileged
• leaks timing information → make it constant-time

• rdtsc
• unprivileged fine-grained timing → make it privileged

→ require changes to the architecture
→ attacks still possible (e.g., Prime+Probe)

101



Hardware level: Stop sharing hardware?

• stop sharing cache

→ attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core

→ stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core

• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores

→ stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU

• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors

→ what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud

• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Stop sharing hardware?

• stop sharing cache → attacks are getting better
• first attacks on L1 → same core → stop sharing core
• current attacks on LLC → across cores → stop sharing CPU
• 2016: first attack across processors → what next?

• not an option for cost reasons in the cloud
• what about JavaScript attacks?

G. Irazoqui et al. “Cross processor cache attacks”. In: AsiaCCS’16. 2016
Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015

102



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache

→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

103



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

103



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches

→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

103



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

103



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost

→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

103



Hardware level: Changes in microarchitecture

• secure cache designs: Random-Permutation Cache, Partition-Locked Cache
→ expensive, not always high performance

• disruptive prefetching: random hardware prefetches
→ adding noise makes attacks harder, not impossible

→ trade-off security/performance/cost
→ performance and cost win, no implementation by manufacturers

Z. Wang et al. “New cache designs for thwarting software cache-based side channel attacks”. In: ACM SIGARCH Computer Architecture News 35.2
(June 2007), p. 494
J. Kong et al. “Hardware-software integrated approaches to defend against software cache-based side channel attacks”. In: HPCA’09. 2009.
A. Fuchs et al. “Disruptive Prefetching: Impact on Side-Channel Attacks and Cache Designs”. In: SYSTOR’15. 2015

103



System level: Prevention

• L1 cache cleansing

→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

104



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

104



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing

→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

104



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

104



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer

→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

104



System level: Prevention

• L1 cache cleansing
→ if applied to LLC → same as no cache, disastrous performance

• page coloring → reduces cache sharing
→ limited number of colors + bad performance
→ doesn’t prevent Flush+Reload

• noise in timers or no timer
→ adding noise makes attacks harder, not impossible
→ removing timers is not realistic

Y. Zhang et al. “Düppel: retrofitting commodity operating systems to mitigate cache side channels in the cloud”. In: CCS’13. 2013
H. Raj et al. “Resource Management for Isolation Enhanced Cloud Services”. In: CCSW’09. 2009
B. C. Vattikonda et al. “Eliminating fine grained timers in Xen”. In: CCSW’11. 2011
M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.

104



System level: Detect on-going attacks

• using performance counters to monitor cache hits and cache misses
→ risk of false positives

Firefox OpenT
TD

stress
-m 1

Flush+
Reload Rowha

mmer
100

102

104

Cache misses (normalized) Cache hits (normalized)

N. Herath et al. “These are Not Your Grand Daddys CPU Performance Counters – CPU Hardware Performance Counters for Security”. In: Black Hat
2015 Briefings. 2015
D. Gruss et al. “Flush+Flush: A Fast and Stealthy Cache Attack”. In: DIMVA’16. 2016

105



Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code
→ see Boris’ talk this afternoon!

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015

106



Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code

→ see Boris’ talk this afternoon!

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015

106



Application level: Detect leakage

• CacheAudit : static analysis of source code
• Cache Template Attacks : dynamic approach

→ limited to side-channels → covert channels still possible
→ most effective for critical code
→ see Boris’ talk this afternoon!

G. Doychev et al. “CacheAudit: A Tool for the Static Analysis of Cache Side Channels”. In: USENIX Security Symposium. 2013
D. Gruss et al. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security Symposium. 2015

106



Application level: Write better code

• square-and-multiply-always algorithm
• bit-sliced AES implementation
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178

107



Application level: Write better code

• square-and-multiply-always algorithm
• bit-sliced AES implementation
• hardware implementations (AES-NI, etc.)

→ protecting crypto is possible and necessary!
→ a few CVEs that have been treated: CVE-2005-0109, CVE-2013-4242,

CVE-2014-0076, CVE-2016-0702, CVE-2016-2178

107



Bigger Perspective and Conclusions



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

108



rdseed and floating point operations

• rdseed
• request a random seed to the hardware random number generator
• fixed number of precomputed random bits, takes time to regenerate them

→ covert channel

• fadd, fmul
• floating-point unit
• floating point operations running time depends on the operands

→ bypassing Firefox’s same origin policy via SVG filter timing attack

D. Evtyushkin et al. “Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations”. In: CCS’16. 2016
M. Andrysco et al. “On subnormal floating point and abnormal timing”. In: S&P’15. 2015

108



jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for transactional memory support in hardware

→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016

109



jmp and TSX instructions

• jmp
• branch prediction and branch target prediction → branch prediction unit

→ covert channels, side-channel attacks on crypto, bypassing kernel ASLR

• TSX instructions
• extension for transactional memory support in hardware

→ bypassing kernel ASLR

O. Acıiçmez et al. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007
D. Evtyushkin et al. “Jump over ASLR: Attacking branch predictors to bypass ASLR”. In: MICRO’16. 2016
Y. Jang et al. “Breaking kernel address space layout randomization with intel TSX”. In: CCS’16. 2016

109



Conclusion

• more a problem of CPU design than Instruction Set Architecture

• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ looking forward to Boris’ talk this afternoon!

110



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations

• quick fixes like removing instructions won’t work
→ looking forward to Boris’ talk this afternoon!

110



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ looking forward to Boris’ talk this afternoon!

110



Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to patch → issues linked to performance optimizations
• quick fixes like removing instructions won’t work

→ looking forward to Boris’ talk this afternoon!

110



Questions?

Contact

 clementine.maurice@iaik.tugraz.at
 @BloodyTangerine



Cache attacks:
Software side-channel and fault attacks

Clémentine Maurice, Graz University of Technology
May 11, 2017—Spring school on Security & Correctness in the IoT 2017


	Cache Attack Techniques
	#1. Cache Covert Channels
	#2. Side-Channel Attack on Crypto
	#3. Side-Channel Attack on Keystroke Timings
	#4. Side-Channel Attack on KASLR
	#5. Fault Attacks on DRAM in JavaScript
	Countermeasures
	Bigger Perspective and Conclusions

