
Microarchitectural Attacks in the Cloud

Clémentine Maurice
April 23, 2017—Workshop on Security and Dependability of Multi-Domain Infrastructures,
Belgrade, Serbia



Cloud abstracts physical resources to the user
Logical isolation maintained by the hypervisor

But there is a real physical world behind this abstraction



Cloud abstracts physical resources to the user
Logical isolation maintained by the hypervisor

But there is a real physical world behind this abstraction







server



server



CPU #1 CPU #2 DRAM



CPU #1 CPU #2 DRAM









Microarchitectural Side-Channel
Attacks



From small optimizations…

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly

• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…



From small optimizations…

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly
• performance improvement ≈ 5%

• very small optimizations: caches, branch
prediction…



From small optimizations…

2008 Nehalem

2012 Sandy Bridge

2013 Ivy Bridge

2014 Haswell

2015 Broadwell

2016 Skylake

• new microarchitectures yearly
• performance improvement ≈ 5%
• very small optimizations: caches, branch
prediction…



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations

• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes
• sequences of benign-looking actions→ hard to detect



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components

• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes
• sequences of benign-looking actions→ hard to detect



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage

• pure-software attacks by unprivileged processes
• sequences of benign-looking actions→ hard to detect



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes

• sequences of benign-looking actions→ hard to detect



… To microarchitectural side-channel attacks

• microarchitectural side channels come from these optimizations
• several processes are sharing microarchitectural components
• attacker infers information from a victim process via hardware usage
• pure-software attacks by unprivileged processes
• sequences of benign-looking actions→ hard to detect



Same-Core Side-Channel Attacks



Hyper-threading

• threads sharing one core share resources: L1, L2 cache, branch predictor



Branch prediction (1/2)

• conditional branches→ taking the branch or not depends on some condition
• the condition has to be evaluated
• instead of stalling the pipeline→ speculative execution of one possible path
→ branch prediction unit predicts the most likely execution path



Branch prediction (2/2)

• branch prediction unit
• branch target buffer (BTB): cache that stores the target addresses of previously
executed branches

• branch predictor: makes the prediction on the outcome of the branch

• two things can go wrong
1. BTB miss
2. misprediction of the branch

• can be observed by timing penalty or hardware performance counters



Branch prediction (2/2)

• branch prediction unit
• branch target buffer (BTB): cache that stores the target addresses of previously
executed branches

• branch predictor: makes the prediction on the outcome of the branch

• two things can go wrong
1. BTB miss
2. misprediction of the branch

• can be observed by timing penalty or hardware performance counters



Side channels on the branch prediction unit

• attacker and victim processes executed on the same core
• algorithm with secret-dependent path
• detect whether specific branches are taken or not taken

S← A×B
S← (S− (S×N− 1 mod R)×N)/R
if S> N then

S← S−N
return S



Side channel on the BTB

• attacker forces the eviction of victim’s entries in the BTB
• next victim execution→ BTB miss→ forces a prediction not-taken
• if the branch is in fact taken→ misprediction→ update the BTB
• next attacker execution→ entries not in the BTB anymore
→ attacker’s BTB misses used to deduce victim’s branch mispredictions

• requires to know how the BTB is indexed (undocumented)
• in most cases micro-benchmarks can extract enough information

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007



Side channel on the BTB

• attacker forces the eviction of victim’s entries in the BTB
• next victim execution→ BTB miss→ forces a prediction not-taken
• if the branch is in fact taken→ misprediction→ update the BTB
• next attacker execution→ entries not in the BTB anymore
→ attacker’s BTB misses used to deduce victim’s branch mispredictions

• requires to know how the BTB is indexed (undocumented)

• in most cases micro-benchmarks can extract enough information

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007



Side channel on the BTB

• attacker forces the eviction of victim’s entries in the BTB
• next victim execution→ BTB miss→ forces a prediction not-taken
• if the branch is in fact taken→ misprediction→ update the BTB
• next attacker execution→ entries not in the BTB anymore
→ attacker’s BTB misses used to deduce victim’s branch mispredictions

• requires to know how the BTB is indexed (undocumented)
• in most cases micro-benchmarks can extract enough information

O. Acıiçmez, J.-P. Seifert, and c. K. Koç. “Predicting secret keys via branch prediction”. In: CT-RSA 2007. 2007



Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!

14



Easy solution #1

Possible side channels using

components shared by a core?

Stop sharing a core!

14



Cross-Core Side-Channel Attacks



Caches on Intel CPUs

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

15



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

15



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private

• last-level cache

• divided in slices
• shared across cores
• inclusive

15



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

15



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices

• shared across cores
• inclusive

15



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores

• inclusive

15



Caches on Intel CPUs

core 0

L1

L2

core 1

L1

L2

core 2

L1

L2

core 3

L1

L2 ring bus

LLC
slice 0

LLC
slice 1

LLC
slice 2

LLC
slice 3

• L1 and L2 are private
• last-level cache

• divided in slices
• shared across cores
• inclusive

15



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

16



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

Data loaded in a specific set depending on its address

16



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Data loaded in a specific set depending on its address

Several ways per set

16



Set-associative caches

0 16 17 25 26 31

Index OffsetAddress

Cache

Cache set

way 0 way 3

Cache line

Data loaded in a specific set depending on its address

Several ways per set

Cache line loaded in a specific way depending on the replacement policy

16



Cache attacks

• caches improve performance

• SRAM is expensive→ small caches
• different timings for memory accesses

1. data is cached→ cache hit→ fast
2. data is not cached→ cache miss→ slow

• cache attacks leverage this timing difference

17



Cache attacks

• caches improve performance
• SRAM is expensive→ small caches

• different timings for memory accesses

1. data is cached→ cache hit→ fast
2. data is not cached→ cache miss→ slow

• cache attacks leverage this timing difference

17



Cache attacks

• caches improve performance
• SRAM is expensive→ small caches
• different timings for memory accesses

1. data is cached→ cache hit→ fast
2. data is not cached→ cache miss→ slow

• cache attacks leverage this timing difference

17



Cache attacks

• caches improve performance
• SRAM is expensive→ small caches
• different timings for memory accesses

1. data is cached→ cache hit→ fast

2. data is not cached→ cache miss→ slow

• cache attacks leverage this timing difference

17



Cache attacks

• caches improve performance
• SRAM is expensive→ small caches
• different timings for memory accesses

1. data is cached→ cache hit→ fast
2. data is not cached→ cache miss→ slow

• cache attacks leverage this timing difference

17



Cache attacks

• caches improve performance
• SRAM is expensive→ small caches
• different timings for memory accesses

1. data is cached→ cache hit→ fast
2. data is not cached→ cache miss→ slow

• cache attacks leverage this timing difference

17



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits

18



Timing differences

50 100 150 200 250 300 350 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es

se
s

cache hits cache misses

18



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

cached cached

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

flushes

Step 2: Attacker flushes the shared cache line

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

loads data

Step 3: Victim loads the data

19



Cache attacks: Flush+Reload

Victim address space Cache Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)

Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

reloads data

Step 4: Attacker reloads the data 19



Flush+Reload: Applications

• cross-VM side channel attacks on crypto algorithms
• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• Cache Template Attacks: automatically finds information leakage
→ side channel on keystrokes and AES T-tables implementation

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014
B. Gülmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES”. . In: COSADE’15. 2015
D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security. 2015
https://github.com/IAIK/cache_template_attacks

20

https://github.com/IAIK/cache_template_attacks


Flush+Reload: Applications

• cross-VM side channel attacks on crypto algorithms
• RSA: 96.7% of secret key bits in a single signature
• AES: full key recovery in 30000 dec. (a few seconds)

• Cache Template Attacks: automatically finds information leakage
→ side channel on keystrokes and AES T-tables implementation

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014
B. Gülmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar. “A Faster and More Realistic Flush+Reload Attack on AES”. . In: COSADE’15. 2015
D. Gruss, R. Spreitzer, and S. Mangard. “Cache Template Attacks: Automating Attacks on Inclusive Last-Level Caches”. In: USENIX Security. 2015
https://github.com/IAIK/cache_template_attacks

20

https://github.com/IAIK/cache_template_attacks


Flush+Reload: Pros and cons

• fine granularity: 1 cache line (64 Bytes)

• but requires shared memory
→ memory deduplication between VMs

21



Flush+Reload: Pros and cons

• fine granularity: 1 cache line (64 Bytes)
• but requires shared memory

→ memory deduplication between VMs

21



Flush+Reload: Pros and cons

• fine granularity: 1 cache line (64 Bytes)
• but requires shared memory
→ memory deduplication between VMs

21



Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!

22



Easy solution #2

Possible side channels using

memory deduplication?

Disable memory deduplication!

22



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

23



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

23



Inclusive property

L1

L2

LLC

core 0 core 1

inclusion

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

23



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2

• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

23



Inclusive property

L1

L2

LLC

core 0 core 1

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

23



Inclusive property

L1

L2

LLC

core 0 core 1

eviction

• inclusive LLC: superset of L1 and L2
• data evicted from the LLC is also
evicted from L1 and L2

• a core can evict lines in the private L1
of another core

23



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

24



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

24



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

24



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

loads data

24



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

fast acces
s

24



Cache attacks: Prime+Probe

Victim address space Cache Attacker address space

Step 1: Attacker primes, i.e., fills, the cache (no shared memory)

Step 2: Victim evicts cache lines while running

Step 3: Attacker probes data to determine if set has been accessed

slow access

24



Challenges with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?
2. without any privilege?
3. and in which order do we access them?

25



Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

26



Last-level cache addressing

• last-level cache→ as many slices as cores
• undocumented hash function that maps a physical address to a slice
• designed for performance

Hphysical address
30 bits

slice (o0, . . . ,ok−1)
k bitsFor 2k slices:

27



Prime+Probe on recent procesors?

Undocumented function→ impossible to target a set

Victim address space Cache Attacker address space

?

?

?

?

→ We reverse-engineered the function!

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID’15. 2015

28



Prime+Probe on recent procesors?

Undocumented function→ impossible to target a set

Victim address space Cache Attacker address space

?

?

?

?

→ We reverse-engineered the function!

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex Addressing Using Performance Counters”.
In: RAID’15. 2015

28



Prime+Probe: Applications

• cross-VM side channel attacks on crypto algorithms:
• El Gamal (sliding window): full key recovery in 12 min.

• tracking user behavior in the browser, in JavaScript
• covert channels between virtual machines in the cloud

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In: S&P’15. 2015.
Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their

Implications”. In: CCS’15. 2015.
C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Römer. “Hello from the Other Side: SSH over Robust Cache Covert

Channels in the Cloud”. In: NDSS’17. 2017.

29



Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine
• solution? “Just use error-correcting codes”

30



Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine

• solution? “Just use error-correcting codes”

30



Covert channels in the cloud

• covert channel: two processes communicating with each other
• not allowed to do so, e.g., across VMs

• literature: stops working with noise on the machine
• solution? “Just use error-correcting codes”

30



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

31



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

31



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

31



Why can’t we just use error correcting codes?

1 0 0 1 1 0Sender

1 0 0 1 1 0Receiver

(a) Transmission without errors

1 0 0 1 1 0Sender

1 1 0 1 1 0Receiver

(b) Noise: substitution error

1 0 0 1 1 0Sender

1 0 0 0 0 0 1 1 0Receiver

(c) Sender descheduled: insertions

1 0 0 1 1 0Sender

1 0 0Receiver

(d) Receiver descheduled: deletions

31



Our robust covert channel

• physical layer:
• transmits words as a sequence of ‘0’s and ‘1’s
• deals with synchronization errors

• data-link layer:
• divides data to transmit into packets
• corrects the remaining errors

32



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set

• receiver probes the set continuously
• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache→ fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver→ slow access

33



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously

• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache→ fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver→ slow access

33



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache→ fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver→ slow access

33



Physical layer: Sending ‘0’s and ‘1’s

• sender and receiver agree on one set
• receiver probes the set continuously
• sender transmits ’0’ doing nothing
→ lines of the receiver still in cache→ fast access

• sender transmits ’1’ accessing addresses in the set
→ evicts lines of the receiver→ slow access

33



Eviction set generation

• need a set of addresses in the same cache set and same slice

• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

34



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

34



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice

• without knowing which slice

34



Eviction set generation

• need a set of addresses in the same cache set and same slice
• problem: slice number depends on all bits of the physical address

physical address

cache tag
cache set
index

cache line
offset

2MB page offset

xxxx

• we can build a set of addresses in the same cache set and same slice
• without knowing which slice

34



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
im

e

35



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
ob

e

35



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
im

e

35



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

S S S S S S S S

R R R R R R R R

receiver
eviction sets

pr
ob

e

35



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

S S S S S S S S

receiver
eviction sets

prime

35



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

R R R R R R R R

S S S S S S S S

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

S S S S S S S S

receiver
eviction sets

probe

35



Jamming agreement

sender
eviction sets

#1

prim
e

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

receiver
eviction sets

prime

35



Jamming agreement

sender
eviction sets

#1

probe

#2

#3

#4

Cache Sets

S S S S S S S S

receiver
eviction sets

35



Jamming agreement

sender
eviction sets

#1

#2

#3

#4

Cache Sets

R R R R R R R R

receiver
eviction sets

#1
probe

35



Jamming agreement

sender
eviction sets

#1 3

#2

#3

#4

Cache Sets

receiver
eviction sets

#1

35



Jamming agreement

sender
eviction sets

#1 3

#2

#3

#4

Cache Sets

receiver
eviction sets

#1

35



Jamming agreement

sender
eviction sets

#1 3

#2

#3

#4

repeat!

receiver
eviction sets

#1

35



Jamming agreement

sender
eviction sets

#1 3

#2 3

#3

#4

repeat!

receiver
eviction sets

#2

#1

35



Jamming agreement

sender
eviction sets

#1 3

#2 3

#3 3

#4

repeat!

receiver
eviction sets

#3

#2

#1

35



Jamming agreement

sender
eviction sets

#1 3

#2 3

#3 3

#4 3

repeat!

receiver
eviction sets

#4

#3

#2

#1

35



Sending the first image

36



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack

• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code→ Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

37



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code→ Berger codes

• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

37



Handling synchronization errors

• deletion errors: request-to-send scheme that also serves as ack
• 3-bit sequence number
• request: encoded sequence number (7 bits)

• ’0’-insertion errors: error detection code→ Berger codes
• appending the number of ’0’s in the word to itself
→ property: a word cannot consist solely of ’0’s

DataPhysical layer word

12 bits

SQN

3 bits

EDC

4 bits

37



Synchronization (before)

38



Synchronization (after)

39



Synchronization (after)

39



Synchronization (after)

39



Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors

• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

40



Data-link layer: Error correction

• Reed-Solomon codes to correct the remaining errors
• RS word size = physical layer word size = 12 bits
• packet size = 212− 1= 4095 RS words
• 10% error-correcting code: 409 parity and 3686 data RS words

Data Parity

3686 RS-words 409 RS-words

Data SQN EDC

12 bits 3 bits 4 bits

Data-link layer packet

Physical layer word

40



Error correction (after)

41



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –

Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

42



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1

Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

42



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –

Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

42



Evaluation

Environment Bit rate Error rate Noise

Native 75.10 KBps 0.00% –
Native 36.03 KBps 0.00% stress -m 1
Amazon EC2 45.25 KBps 0.00% –
Amazon EC2 45.09 KBps 0.00% web server serving files on sender VM
Amazon EC2 42.96 KBps 0.00% stress -m 2 on sender VM
Amazon EC2 42.26 KBps 0.00% stress -m 1 on receiver VM
Amazon EC2 37.42 KBps 0.00% web server on all 3 VMs, stress -m 4 on 3rd

VM, stress -m 1 on sender and receiver VMs
Amazon EC2 34.27 KBps 0.00% stress -m 8 on third VM

42



Building an SSH connection

Hypervisor

Last Level Cache (LLC)

VM 1

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Client
(e.g. ssh)

Socket

VM 2

Covert Channel

Prime+Probe

TCP↔File

File System

TCP Server
(e.g. sshd)

Socket

43



SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

44



SSH evaluation

Between two instances on Amazon EC2

Noise Connection

No noise 3

stress -m 8 on third VM 3

Web server on third VM 3

Web server on SSH server VM 3

Web server on all VMs 3

stress -m 1 on server side unstable

Telnet also works with occasional corrupted bytes with stress -m 1

44



Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!

45



Easy solution #3

Possible side channels using

components shared by a CPU?

Stop sharing a CPU!

45



Cross-CPU Side-Channel Attacks



What if?

• VMs located on the same physical machine, but on separate CPUs?

• they share some DRAM!

46



What if?

• VMs located on the same physical machine, but on separate CPUs?
• they share some DRAM!

46



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

47



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

47



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

47



DRAM organization

channel 0

channel 1

back of DIMM: rank 1

front of DIMM:
rank 0

chip

47



DRAM organization

chip
bank 0

row 0
row 1
row 2
…

row 32767

row buffer

→ bits in cells in rows

48



DRAM row buffer

• DRAM internally is only capable of reading entire rows

• capacitors in cells discharge when you “read the bits”
• buffer the bits when reading them from the cells
• write the bits back to the cells when you’re done
→ row buffer

49



DRAM row buffer

• DRAM internally is only capable of reading entire rows
• capacitors in cells discharge when you “read the bits”
• buffer the bits when reading them from the cells
• write the bits back to the cells when you’re done

→ row buffer

49



DRAM row buffer

• DRAM internally is only capable of reading entire rows
• capacitors in cells discharge when you “read the bits”
• buffer the bits when reading them from the cells
• write the bits back to the cells when you’re done
→ row buffer

49



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activatedactivate 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activated
→ row 1 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 1
→ row 1 activated
→ row 1 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

CPU wants to access row 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

CPU wants to access row 2
→ row 2 activated

activate 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

copy

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

return

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

CPU wants to access row 2
→ row 2 activated
→ row 2 copied to row buffer

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1
→ slow (row conflict)

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer

return

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bufferrow buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

CPU wants to access row 2—again
→ row 2 already in row buffer
→ fast (row hit)

50



How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
…

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row buffer

rowbuffer = cache

50



DRAM timing differences

72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288

101

103

105

107

Access time [CPU cycles]

Nu
m
be

ro
fc

as
es

Cache hit Cache miss, row hit Cache miss, row conflict

51



DRAM timing differences

72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288

101

103

105

107

Access time [CPU cycles]

Nu
m
be

ro
fc

as
es

Cache hit Cache miss, row hit Cache miss, row conflict

51



DRAM side channels?

• row buffers are caches

• we can observe timing differences
• how to exploit these timing differences?
• target addresses in the same channel, rank and bank
• but DRAM mapping functions are undocumented
→ we reverse-engineered them!

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security
Symposium. 2016

52



DRAM side channels?

• row buffers are caches
• we can observe timing differences

• how to exploit these timing differences?
• target addresses in the same channel, rank and bank
• but DRAM mapping functions are undocumented
→ we reverse-engineered them!

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security
Symposium. 2016

52



DRAM side channels?

• row buffers are caches
• we can observe timing differences
• how to exploit these timing differences?

• target addresses in the same channel, rank and bank
• but DRAM mapping functions are undocumented
→ we reverse-engineered them!

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security
Symposium. 2016

52



DRAM side channels?

• row buffers are caches
• we can observe timing differences
• how to exploit these timing differences?
• target addresses in the same channel, rank and bank

• but DRAM mapping functions are undocumented
→ we reverse-engineered them!

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security
Symposium. 2016

52



DRAM side channels?

• row buffers are caches
• we can observe timing differences
• how to exploit these timing differences?
• target addresses in the same channel, rank and bank
• but DRAM mapping functions are undocumented

→ we reverse-engineered them!

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security
Symposium. 2016

52



DRAM side channels?

• row buffers are caches
• we can observe timing differences
• how to exploit these timing differences?
• target addresses in the same channel, rank and bank
• but DRAM mapping functions are undocumented
→ we reverse-engineered them!

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security
Symposium. 2016

52



DRAMA: DRAM Addressing attacks

• infer behavior from memory accesses similarly to cache attacks

• works across VMs, across cores, across CPUs
• covert channels and side-channel attacks

53



DRAMA: DRAM Addressing attacks

• infer behavior from memory accesses similarly to cache attacks
• works across VMs, across cores, across CPUs

• covert channels and side-channel attacks

53



DRAMA: DRAM Addressing attacks

• infer behavior from memory accesses similarly to cache attacks
• works across VMs, across cores, across CPUs
• covert channels and side-channel attacks

53



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

case #1: sender transmits 1

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

case #1: sender transmits 1
sender accesses row j ̸= i

activate 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

copy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

case #1: sender transmits 1
sender accesses row j ̸= i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

case #1: sender transmits 1
sender accesses row j ̸= i
next receiver access→ copy row buffer

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

copy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

case #1: sender transmits 1
sender accesses row j ̸= i
next receiver access→ copy row buffer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

→ slow

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

case #2: sender transmits 0

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

case #2: sender transmits 0
sender does nothing

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

case #2: sender transmits 0
sender does nothing
next receiver access→ already in buffer

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

54



DRAMA covert channel

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

sender and receiver agree on one bank
receiver continuously accesses a row i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

case #2: sender transmits 0
sender does nothing
next receiver access→ already in buffer
→ fast

54



DRAMA covert channel: Evaluation

• native environment: 1.6Mbps
• cross-VM: 596 Kbps

• also implemented in JavaScript

• sender inside a VM
• receiver runs in JavaScript in the browser on the host
• 11 bps

55



DRAMA covert channel: Evaluation

• native environment: 1.6Mbps
• cross-VM: 596 Kbps
• also implemented in JavaScript

• sender inside a VM
• receiver runs in JavaScript in the browser on the host
• 11 bps

55



DRAMA covert channel: Evaluation

• native environment: 1.6Mbps
• cross-VM: 596 Kbps
• also implemented in JavaScript

• sender inside a VM
• receiver runs in JavaScript in the browser on the host
• 11 bps

55



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #1
spy accesses row j ̸= i, copy to row buffer

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #1
spy accesses row j ̸= i, copy to row buffer
victim accesses row i, copy to row buffer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0activate

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #1
spy accesses row j ̸= i, copy to row buffer
victim accesses row i, copy to row buffer
spy accesses row i, no copy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0activate

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #1
spy accesses row j ̸= i, copy to row buffer
victim accesses row i, copy to row buffer
spy accesses row i, no copy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

→ fast

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #2
spy accesses row j ̸= i, copy to row buffer

activate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #2
spy accesses row j ̸= i, copy to row buffer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

no victim access on row i

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #2
spy accesses row j ̸= i, copy to row buffer
no victim access on row i
spy accesses row i, copy to row buffer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0activate

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

56



DRAMA side-channel attacks

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

spy and victim share a row i

case #2
spy accesses row j ̸= i, copy to row buffer
no victim access on row i
spy accesses row i, copy to row buffer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

→ slow

56



Two related questions

• what is the chance we can share a row with important victim data?

• what kind of spatial accuracy will we get?

57



Two related questions

• what is the chance we can share a row with important victim data?
• what kind of spatial accuracy will we get?

57



Sharing a DRAM row?

• the smallest unit of physical memory is one page

• pages are usually 4 KB
• DRAM rows are usually 8 KB
• we need the victim’s address and our address in the same row
• if you say that two pages share one row you are not wrong…
• … but not right either
• why?

58



Sharing a DRAM row?

• the smallest unit of physical memory is one page
• pages are usually 4 KB

• DRAM rows are usually 8 KB
• we need the victim’s address and our address in the same row
• if you say that two pages share one row you are not wrong…
• … but not right either
• why?

58



Sharing a DRAM row?

• the smallest unit of physical memory is one page
• pages are usually 4 KB
• DRAM rows are usually 8 KB

• we need the victim’s address and our address in the same row
• if you say that two pages share one row you are not wrong…
• … but not right either
• why?

58



Sharing a DRAM row?

• the smallest unit of physical memory is one page
• pages are usually 4 KB
• DRAM rows are usually 8 KB
• we need the victim’s address and our address in the same row

• if you say that two pages share one row you are not wrong…
• … but not right either
• why?

58



Sharing a DRAM row?

• the smallest unit of physical memory is one page
• pages are usually 4 KB
• DRAM rows are usually 8 KB
• we need the victim’s address and our address in the same row
• if you say that two pages share one row you are not wrong…

• … but not right either
• why?

58



Sharing a DRAM row?

• the smallest unit of physical memory is one page
• pages are usually 4 KB
• DRAM rows are usually 8 KB
• we need the victim’s address and our address in the same row
• if you say that two pages share one row you are not wrong…
• … but not right either

• why?

58



Sharing a DRAM row?

• the smallest unit of physical memory is one page
• pages are usually 4 KB
• DRAM rows are usually 8 KB
• we need the victim’s address and our address in the same row
• if you say that two pages share one row you are not wrong…
• … but not right either
• why?

58



Accuracy (1)

• a 4 KB page might not be in a single row

• depending on the functions, a page can be distributed over multiple rows
• this is the case if address bits 0 to 11 are used for the mapping
• e.g., Skylake uses low bits for channel and bank group
→ one physical page is distributed over 4 rows

59



Accuracy (1)

• a 4 KB page might not be in a single row
• depending on the functions, a page can be distributed over multiple rows

• this is the case if address bits 0 to 11 are used for the mapping
• e.g., Skylake uses low bits for channel and bank group
→ one physical page is distributed over 4 rows

59



Accuracy (1)

• a 4 KB page might not be in a single row
• depending on the functions, a page can be distributed over multiple rows
• this is the case if address bits 0 to 11 are used for the mapping

• e.g., Skylake uses low bits for channel and bank group
→ one physical page is distributed over 4 rows

59



Accuracy (1)

• a 4 KB page might not be in a single row
• depending on the functions, a page can be distributed over multiple rows
• this is the case if address bits 0 to 11 are used for the mapping
• e.g., Skylake uses low bits for channel and bank group

→ one physical page is distributed over 4 rows

59



Accuracy (1)

• a 4 KB page might not be in a single row
• depending on the functions, a page can be distributed over multiple rows
• this is the case if address bits 0 to 11 are used for the mapping
• e.g., Skylake uses low bits for channel and bank group
→ one physical page is distributed over 4 rows

59



Accuracy (2)

0 127

40954 KB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 KB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 KB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 KB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 KB row x in BG0 (0) and channel (0)

60



Accuracy (2)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

BG0 (0), Channel (0)

0 127

40954 KB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 KB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 KB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 KB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 KB row x in BG0 (0) and channel (0)

60



Accuracy (2)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

BG0 (0), Channel (0)
BG0 (1), Channel (0)

0 127

40954 KB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 KB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 KB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 KB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 KB row x in BG0 (0) and channel (0)

60



Accuracy (2)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)

0 127

40954 KB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 KB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 KB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 KB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 KB row x in BG0 (0) and channel (0)

60



Accuracy (2)

BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)
BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)
BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)
BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)
BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)
BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)
BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)
BG0 (0), Channel (0)
BG0 (1), Channel (0)
BG0 (0), Channel (1)
BG0 (1), Channel (1)

0 127

40954 KB Page #1

Page #2 Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1

8 KB row x in BG0 (1) and channel (1)

Page #3 Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2

8 KB row x in BG0 (0) and channel (1)
Page #4 Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3

8 KB row x in BG0 (1) and channel (0)

Page #5 Page #6 Page #7 Page #8Page #1 Page #2 Page #3 Page #4

8 KB row x in BG0 (0) and channel (0)

60



Accuracy (3)

Number of pages per row depends on DRAM configuration and CPU architecture

DRAM bank

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

Sandy Bridge /w 1 DIMM

Sandy Bridge /w 1 DIMM
→ 2 pages per row

…

row buffer

…

row buffer

61



Accuracy (3)

Number of pages per row depends on DRAM configuration and CPU architecture

DRAM bank

…

row buffer

Sandy Bridge /w 1 DIMM
→ 2 pages per row

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

Ivy Bridge /w 2 DIMM

Ivy Bridge /w 2 DIMM
→ 4 pages per row

…

row buffer

61



Accuracy (3)

Number of pages per row depends on DRAM configuration and CPU architecture

DRAM bank

…

row buffer

Sandy Bridge /w 1 DIMM
→ 2 pages per row

…

row buffer

Ivy Bridge /w 2 DIMM
→ 4 pages per row

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

…

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

row buffer

Skylake /w 2 DIMM
Skylake /w 2 DIMM
→ 8 pages per row

61



Spying on keystrokes

• side-channel: template attack
• allocate a large fraction of memory to be in a row with the victim
• profile memory and record row-hit ratio for each address

0 2 4 6 8 10 12 14
150

200

250

300

w w w . f a c e b o o k . c o m

Time in seconds

Ac
ce
ss

tim
e

62



Easy solution #4

Possible side channels using

components shared by a machine?

Now what?

63



Easy solution #4

Possible side channels using

components shared by a machine?

Now what?

63



There’s more!



There’s more!

Sharing hardware does not only happen in the cloud

• JavaScript is essentially code execution
• same problems on mobile devices
• and between SGX enclaves

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications”. In: CCS’15. 2015
M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in

JavaScript ”. In: FC’17. 2017
M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016
M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA’17. To

appear. 2017

64



There’s more!

Sharing hardware does not only happen in the cloud

• JavaScript is essentially code execution

• same problems on mobile devices
• and between SGX enclaves

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications”. In: CCS’15. 2015
M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in

JavaScript ”. In: FC’17. 2017
M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016
M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA’17. To

appear. 2017

64



There’s more!

Sharing hardware does not only happen in the cloud

• JavaScript is essentially code execution
• same problems on mobile devices

• and between SGX enclaves

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications”. In: CCS’15. 2015
M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in

JavaScript ”. In: FC’17. 2017
M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016
M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA’17. To

appear. 2017

64



There’s more!

Sharing hardware does not only happen in the cloud

• JavaScript is essentially code execution
• same problems on mobile devices
• and between SGX enclaves

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications”. In: CCS’15. 2015
M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in

JavaScript ”. In: FC’17. 2017
M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016
M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA’17. To

appear. 2017

64



On the difficulty of finding countermeasures

• cryptographic algorithms

→ today we know how to write good algorithms
• most of the time

• other problems: keystroke timing attacks, attacks against ASLR…
• no hardware sharing is not an option

How to counter attacks based on hardware optimizations
without decreasing performance brought by these optimizations?

C. Pereida García, B. B. Brumley, and Y. Yarom. “Make Sure DSA Signing Exponentiations Really are Constant-Time”. In: CCS’16. 2016

65



On the difficulty of finding countermeasures

• cryptographic algorithms→ today we know how to write good algorithms

• most of the time

• other problems: keystroke timing attacks, attacks against ASLR…
• no hardware sharing is not an option

How to counter attacks based on hardware optimizations
without decreasing performance brought by these optimizations?

C. Pereida García, B. B. Brumley, and Y. Yarom. “Make Sure DSA Signing Exponentiations Really are Constant-Time”. In: CCS’16. 2016

65



On the difficulty of finding countermeasures

• cryptographic algorithms→ today we know how to write good algorithms
• most of the time

• other problems: keystroke timing attacks, attacks against ASLR…
• no hardware sharing is not an option

How to counter attacks based on hardware optimizations
without decreasing performance brought by these optimizations?

C. Pereida García, B. B. Brumley, and Y. Yarom. “Make Sure DSA Signing Exponentiations Really are Constant-Time”. In: CCS’16. 2016

65



On the difficulty of finding countermeasures

• cryptographic algorithms→ today we know how to write good algorithms
• most of the time

• other problems: keystroke timing attacks, attacks against ASLR…

• no hardware sharing is not an option

How to counter attacks based on hardware optimizations
without decreasing performance brought by these optimizations?

C. Pereida García, B. B. Brumley, and Y. Yarom. “Make Sure DSA Signing Exponentiations Really are Constant-Time”. In: CCS’16. 2016

65



On the difficulty of finding countermeasures

• cryptographic algorithms→ today we know how to write good algorithms
• most of the time

• other problems: keystroke timing attacks, attacks against ASLR…
• no hardware sharing is not an option

How to counter attacks based on hardware optimizations
without decreasing performance brought by these optimizations?

C. Pereida García, B. B. Brumley, and Y. Yarom. “Make Sure DSA Signing Exponentiations Really are Constant-Time”. In: CCS’16. 2016

65



On the difficulty of finding countermeasures

• cryptographic algorithms→ today we know how to write good algorithms
• most of the time

• other problems: keystroke timing attacks, attacks against ASLR…
• no hardware sharing is not an option

How to counter attacks based on hardware optimizations
without decreasing performance brought by these optimizations?

C. Pereida García, B. B. Brumley, and Y. Yarom. “Make Sure DSA Signing Exponentiations Really are Constant-Time”. In: CCS’16. 2016

65



Conclusion



Conclusion

• more a problem of CPU design than Instruction Set Architecture

• hard to find→ lots of undocumented hardware
• not that complicated to run→ more automated attacks and frameworks
• hard to patch→ issues linked to performance optimizations
• quick fixes don’t work
• more work needed before having satisfying solutions

http://cs.adelaide.edu.au/~yval/Mastik/

66

http://cs.adelaide.edu.au/~yval/Mastik/


Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to find→ lots of undocumented hardware

• not that complicated to run→ more automated attacks and frameworks
• hard to patch→ issues linked to performance optimizations
• quick fixes don’t work
• more work needed before having satisfying solutions

http://cs.adelaide.edu.au/~yval/Mastik/

66

http://cs.adelaide.edu.au/~yval/Mastik/


Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to find→ lots of undocumented hardware
• not that complicated to run→ more automated attacks and frameworks

• hard to patch→ issues linked to performance optimizations
• quick fixes don’t work
• more work needed before having satisfying solutions

http://cs.adelaide.edu.au/~yval/Mastik/

66

http://cs.adelaide.edu.au/~yval/Mastik/


Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to find→ lots of undocumented hardware
• not that complicated to run→ more automated attacks and frameworks
• hard to patch→ issues linked to performance optimizations

• quick fixes don’t work
• more work needed before having satisfying solutions

http://cs.adelaide.edu.au/~yval/Mastik/

66

http://cs.adelaide.edu.au/~yval/Mastik/


Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to find→ lots of undocumented hardware
• not that complicated to run→ more automated attacks and frameworks
• hard to patch→ issues linked to performance optimizations
• quick fixes don’t work

• more work needed before having satisfying solutions

http://cs.adelaide.edu.au/~yval/Mastik/

66

http://cs.adelaide.edu.au/~yval/Mastik/


Conclusion

• more a problem of CPU design than Instruction Set Architecture
• hard to find→ lots of undocumented hardware
• not that complicated to run→ more automated attacks and frameworks
• hard to patch→ issues linked to performance optimizations
• quick fixes don’t work
• more work needed before having satisfying solutions

http://cs.adelaide.edu.au/~yval/Mastik/

66

http://cs.adelaide.edu.au/~yval/Mastik/


Thank you!

Contact

 clementine@cmaurice.fr
 @BloodyTangerine



Microarchitectural Attacks in the Cloud

Clémentine Maurice
April 23, 2017—Workshop on Security and Dependability of Multi-Domain Infrastructures,
Belgrade, Serbia


	Microarchitectural Side-Channel Attacks
	Same-Core Side-Channel Attacks
	Cross-Core Side-Channel Attacks
	Cross-CPU Side-Channel Attacks
	There's more!
	Conclusion

